

Emissão em 21cm está presente em todas as linhas de visada, mas não a absorção.

ი-ი

- nuvens ou filamentos (filling factor 1-4%)
- T ~ 60-70 K (com alta dispersão, entre 15 e 250 K)
- turbulento e supersônico (Mach number ~ 3)
- fundo difuso (filling factor ~30%)

- Ao se observar espectros na direção de estrelas, pode-se identificar linhas que são originadas no MI
- não compartilham possíveis movimentos em sistemas binários e podem ter diversas componentes, devido à origem em regiões de diferentes velocidades com relação ao observador
- Linhas de absorção do MI são estudadas através de estrelas quentes, pois as de tipo tardio possuem muitas linhas que dificultam o estudo das do MI, além do contínuo azul ser menor (ver figura)
- São observadas principalmente no óptico e no UV (=transições eletrônicas)
- óptico: Nal (D), Call (H&K), Till, Cal, KI, CH, NH, CN, CH+, C2
- UV: MgII, HI, OI-OIV, CI a CIV
- Diffuse interstellar bands (DIBs) linhas produzidas no MI, mais largas que as demais linhas do MI, e SEM identificação definida
- a mais forte aparece em 4430A
- Dois tipos de linhas interestelares
- linhas largas do H e H₂
- linhas estreitas (mais estreitas que estelares) de outros átomos 6-9

linhas interestelares Assim, essas estrelas contínuo no azul nas Notar a ausência de adequadas para observações as não são as mais estrelas trias.

6-10

Note que o espectro superior tem muito menos linhas que os inferiores (mais frios)

Espectros estelares

Dyson & Williams Fig. 2.2

$$\tau_{vr} = N_j \sigma \phi(\Delta v)$$
 vide aula de teoria

ი-15

	medida de dens. $\leftarrow N_j \approx n_j H$ colunar polo-a-polo \rightarrow média da dens. volumétrica no plano	 Linhas do Call não é saturada ⇒ boa determinação de Nj (W ∝ Nj) largura efetiva do disco Galáctico 2 H ~ 240 pc 	 Linhas do MI determinação de abundâncias 		6-30	 Essas inimas de ressonancia estad localizadas no opuco (ver Tabela 4.1 do Maciel -anexa- e Tab. 4.2 de SS – p. 168 – mais completa) 		que o hidrogênio, com linhas mais estreitas portanto	 Assim as deteccões iniciais (aula 1) de linhas interestelares 	 Os átomos e moléculas no MI estão usualmente em seus estados fundamentais ⇒ linhas ressonantes 	Linhas de absorção estreitas
Maciel – Fig. 4.6 Σ Oph - Ε(B-V) = 0.32	0,0 3930	1.5 1.0			Maciel	CH ⁺ CH ⁺	CN	Ca II Ca II	Na I Na I	íon/molécula	Tabela 4.1
	3940 395					4300, 31 4232, 58 3957, 74	3874, 61	(K) 3933,66 (H) 3968,47	(D2) 5889, 95 (D1) 5895, 92	λ (Å)	
	50 3960 3970 λ (λ)					$A^2 \Delta \leftarrow X^2 \Pi(0,0) R_2(1)$ $A^1 \Pi \leftarrow X^1 \Sigma^+(0,0) R(0)$ $A^1 \Pi \leftarrow X^1 \Sigma^+(1,0) R(0)$	$B^2\Sigma^+ \leftarrow X^2\Sigma^+(0,0) \ R(0)$	$\begin{array}{c} 4^2 S_{1/2} - 4^2 P_{3/2}^0 \\ 4^2 S_{1/2} - 4^2 P_{1/2}^0 \end{array}$	${3^2S_{1/2}-3^2P_{3/2}^0\over 3^2S_{1/2}-3^2P_{1/2}^0}$	transição	
	398	38									

- Forma da curva de crescimento "teórica" não representa necessariamente o observado: a forma do alargamento da linha não é necessariamente Doppler
- Porém, podemos esperar que alguns íons (caracterizados pela mesma função de distribuição de velocidades) possuam a mesma forma da curva de crescimento (parte linear e saturada)
- estágios de ionização dominantes e não-dominantes
- ver Fig. 5.14 SS p. 312
- parte linear: não depende de b(T)
- parte saturada: depende de b, mas não de $\Gamma_{
 m k}$
- parte de raiz quadrada: depende de Γ_k (portanto da espécie)

Fig.5.14. Empirical curves of growth for interstellar absorption lines of the dominant ionisation stages of a few elements in the spectrum of the star (Ophiuchi. The family of curves was calculated for $b = 6.5 \text{ km s}^{-1}$ with the damping constants γ_{rad} for each of the plotted lines. [By permission of Morton (1975)]

SE - Fig. 5.14

6-43

- linhas de elementos altamente ionizados associadas a estrelas quentes
- O VI: 1031.9 1037.6 Å
- ∽ Si IV: 1400 Å
- ∽ C IV: 1550 Å
- linhas largas (asas de amortecimento)
- gás coronal: T ~ 10⁶ K
- densidade: 10⁻⁴ do MI "comum"
- ionização por colisões

Assim, a largura equivalente resulta em:

$$\frac{W_{\lambda}}{\lambda_{jk}} = \frac{\lambda_{jk}}{c} \int_{inha} \left\{ 1 - \exp\left[-N_{j} \frac{\pi e^{2}}{m_{e}c^{2}} f_{jk} \frac{\lambda_{jk}}{b\sqrt{\pi}} e^{-\nu/b^{2}} \right] \right\} d\nu$$

$$\frac{W_{\lambda}}{\lambda_{jk}} = \frac{\lambda_{jk}}{c} \int_{inha} \left\{ 1 - \exp\left[-\tau_{o}e^{-\nu/b^{2}} \right] \right\} d\nu$$

$$onde\tau_{o} = N_{j} f_{jk} \lambda_{jk} b \frac{\pi e^{2}}{\sqrt{\pi m_{e}c^{2}}} \leftarrow \text{profundidade optica}$$