

he giant NGC 3603 Note estrelas ionizantes no centro da nebulosa

Galeria de espectros:

http://www.williams.edu/Astronomy/research/PN/nebulae/

12-15

estrela ionizante é a pequena

PRC98-39 · Space Telescope Science Institute · Hubble Heritage Team

Heritag

Restos de supernova •Se estrela possui massa inicial > 10 M _☉ , sua evolução final passa por uma explosão de SN •sua geometria é bastante complexa: filamentada •velocidades de expansão entre 300 e 6.000 km/s •Exemplos (ver figura) • Nebulosa do Carangueijo (NGC 1952, M1) ~1.000 anos • Vela, ~ 13.000 anos • Anel de Cygnus, ~ 17.000 anos •onda de choque aquece o gás a T ~ 10 ⁵ K • ionização por colisões	NGC 6302 HST HST Strela central: 250.000 K disco de poeira inclusive gelo de água
Puppis A em raios-> notar pontin na imagen ROSAT: é a estrela o neutrons	 as NPs são similares as RHII do ponto de vista observacion: em casos onde não se pode resolver a estrela central e nebulosa, os espectros podem aparecer superpostos estrelas centrais podem ser mais quentes que as da RHII

17-77

 $r_{s} = \left[\frac{3\mathcal{Q}(0)}{4\pi n_{e} n_{H} \alpha^{(2)}}\right]^{1/3}$

quando n aumenta

• Considerando x ~ 1 e n_e e n_H constantes com o raio

• Assim, a medida que r cresce, Q(r) diminui como conseqüência de ionizações seguidas de recombinações para

n > 1 (para n=1 a recombinação produz um fóton que é

capaz de ionizar novamente o elemento)

Raio da região ionizada, isto é, raio onde Q(r) = 0.

 $Q(r_s) = 0$

Raio de Strömgren, rs:

12-28

Aquecimento pela fotoionização do H $\Gamma_{ep} = n_e n_p \left[E_2 \alpha - \frac{1}{2} m_e \sum_j \langle \sigma_{ej} v^3 \rangle \right]$ E_2: energia média dos fotoelétrons $\sum_{j=1}^{\infty} \frac{h(v - v_1)\sigma_v c U_v}{hv} dv$ $E_2 = \frac{\sum_{j=1}^{\infty} \frac{\sigma_v c U_v}{hv} dv}{\sum_{j=1}^{\infty} \frac{\sigma_v c U_v}{hv} dv}$ Cálculo de E ₂ é complexo, pois envolve o campo de radiação (estelar + difuso) 12-47	Raio da região ionizada com grãos• No Maciel, e também no Spitzer, é apresentado o cálculo de- $f = r/r_s$ -onde r é o raio da região ionizada na presença de grãos r_{sd} f 0.10 0.98 0.20 0.96 0.40 0.91 0.6 0.87 0.8 0.84 1.0 0.81 1.5 0.75 2.0 0.75 2.0 0.15 10 0.37 20 0.15
 Podemos expressar o resultado como: E₂ = 3/2 k T_{en} onde T_{en} é chamada temperatura de entrada Existem duas situações onde E₂ pode ser calculado de maneira relativamente simples próximo a estrela, onde campo difuso pode ser desprezado considerar valor médio em toda a nebulosa Vamos expressar os resultados como E₂ = \nu k T_c onde consideramos que a estrela emite no ultravioleta como um corpo negro a temperatura (de cor) T_c 	Temperatura das regiões HII, é necessário considerar os mecanismos de aquecimento e resfriamento Vamos, então, quantificar os processos mais importantes 12-46

$$\begin{aligned} & \text{Fig. 8.5-Macid} \\ & \text{Links transitions} \\ & \text{Links transitio$$

12-56

12-63

• Usando linhas do [OIII] 4959,5007/4363 Å - podem também ser usadas as linhas [NII] 6548,6584/5754 Å Estimando Te

$$R(OIII) = \frac{I_{4959} + I_{5007}}{I_{4363}} = \frac{7,73 \exp\left[3,2910^{-4}/T_{e}\right]}{1+4,510^{-4}(n_{e}/T_{e}^{1/2})}$$

•no limite de baixas densidades e temperaturas altas o denominador tende a 1 e a dependência com n_e é anulada

- ver Fig. 8.9 – Maciel – p. 256

• Exemplo: NGC 3132

- $R(OIII) = 392.2 \Rightarrow T_e = 8\ 380\ K$
- $R(NII) \Rightarrow T_e = 9590 \text{ K}$

- Antes de determinarmos a abundância, precisamos estimar:
- densidade e temperatura: diagnóstico de plasma
- extinção interestelar: decremento de Balmer
- · Abundâncias determinadas a partir das intensidades das
- Abundância de um dado elemento precisa considerar

