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Abstract

We investigate two important questions about the use of the nonextensive thermostatistics
(NETS) formalism in the context of nonlinear galaxy clustering in the Universe. Firstly, we
de4ne a quantitative criterion for justifying nonextensivity at di6erent physical scales. Then, we
discuss the physics behind the ansatz of the entropic parameter q(r). Our results suggest the
approximate range where nonextensivity can be justi4ed and, hence, give some support to the
applicability of NETS to the study of large-scale structures.
c© 2004 Published by Elsevier B.V.
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1. Introduction

The evolution of large-scale structures in the Universe is one of the most important
questions of modern cosmology. A considerable amount of work has been done on
numerical and analytical approaches to characterise the clustering of matter at large
scales. One of the diAculties inherent to this subject is that, in order to make progress
in the understanding of general models, it is necessary to de4ne methods for structure
quanti4cation.
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Usually, quantitative studies of large-scale structures are based on the two-point cor-
relation function �(r) for the galaxy distribution. Estimates indicate this function is well
approximated by �(r) = (r=r0)−� (with � ≈ 1:8), where r0 is the correlation length,
the scale marking the transition between linear and nonlinear regimes. The usual
range for �, found in the literature, is 1:5¡�¡ 1:97 (see, e.g.,
Refs. [1,2]), with r0=5 h−1 Mpc for galaxies and r0=25 h−1 Mpc for cluster (see, e.g.,
Ref. [3]). At larger scales, the structure of the Universe presents patterns like walls
and 4laments (with dimensions ∼ 150 h−1 Mpc) seemingly reaching homogenisation at
Cosmic Microwave Background (CMB) scales (& 1000 h−1 Mpc). Some authors have
had some success describing the clustering properties of visible matter over this wide
range of scales in terms of a multifractal phenomenon associated with density thresh-
olds applied to multifractal sets (e.g. Refs. [4,5]). However, the relative success of the
multifractal approach does not imply a better understanding of the physics behind this
framework. Actually, it is not simple to 4nd a dynamical connection between fractal
sets and galaxy clustering. Recently, Ramos et al. [6] (hereafter RWRR) shed some
light on this question by putting forward a model based on the generalized thermo-
dynamics (NETS) formalism [7]. They show that applying the idea of nonextensivity,
intrinsic to NETS, it is possible to derive an expression for the correlation function

1 + �(r) = 1
3 D2r(D2−3) ; (1)

using a scale-dependent correlation dimension

D2(r) = 3
log[2 + a(1 − q(r))]

log 2
; (2)

where the entropic parameter q(r) is given by the following ansatz:

r ∼ 1
(q − 1)�

(3)

with a and � being free parameters of the model. This approach shows a smooth
transition from a clustered Universe to large-scale homogeneity, with D2=3. However,
RWRR do not discuss two important questions concerning the conceptual basis of the
model: the necessity of de4ning a criterion that allows us to assume nonextensivity in
the context of galaxy clustering and the physics behind the ansatz for q(r). In the next
two sections these questions are further developed and some conclusions are drawn at
the end.

2. Nonextensivity and gravitational clustering

The physical motivation of the approach adopted by RWRR is built upon the fact
that components of gravitating systems tend to evolve spontaneously into increasingly
complex structures due to the long-range nature of the gravitational interaction. The
NETS theory generalises the Boltzmann–Gibbs statistical mechanics and can be applied
to systems dominated by the long-range nature of gravity. However, the application
of NETS to an ensemble of comoving cells containing gravitating particles depends
on the behaviour of the average correlation energy inside a spherical cell of volume
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V = 4
R3=3 with increasing scales R. For instance, the grand canonical ensemble of
cells that are larger than the correlation length are approximately extensive, since the
universal expansion e6ectively limits the thermodynamic e6ects of gravity to roughly
the correlation length scale (e.g. Refs. [3,8]). Also, for an individual cell whose size is
larger than the correlation length, extensivity is possibly a good approximation because
the correlation energy between two members of the ensemble is negligible compared
to the internal correlation energy:

Ucorr�U1 + U2 ⇒ Utot ≈ U1 + U2 : (4)

Due to these reasons, the application of NETS to galaxy clustering is not straightfor-
ward and demands better criteria to properly describe the problem using the nonex-
tensive formalism. For real nonextensive systems, the correlation energy between two
cells should be as important as the internal correlation energy, such that

Utot = U1 + U2 + Ucorr : (5)

Following Sheth and Saslaw [9], we compute the average gravitational correlation
energy within cells of volumes V and 2V for increasing R:

WV = LnV
∫ R

0

Gm2

2r
�(r)4
 Lnr2 dr ; (6)

where m is the mass and Ln is the average number density of particles in a cell of size
V . The extensivity approximation requires that W2V ≈ 2WV , approximately veri4ed for
the power law correlation, �(r) = �0r−�, whenever �¿ 1 (see Ref. [9]). In this case,
|W2V =2WV | = 2(2−�)=3, which means that, using � = 1:77, we 4nd a ∼ 5% deviation
from the strict extensivity condition at all scales.
In the NETS context, we substitute (1), (2) and (3) into (6), numerically inte-

grate for V and 2V (the spherical cell of volume 2V has radius 21=3R) and calculate
the correlation ratio |W2V =2WV | for each upper limit R. The results are presented in
Fig. 1, where we plot the three cases investigated by RWRR in comparison to the line
de4ned by the power-law correlation (for � = 1:77). Note that, for the three NETS
models, we see di6erent levels of deviations from the extensivity approximation. In
particular, NETS 3 model presents deviations from extensivity of ∼ 20% even at very
large scales. However, for large enough scales, the correlation ratio decreases and the
extensivity approximation is recovered, for models NETS 1 and NETS 2. In order to
properly invoke nonextensivity, we propose a lower limit for the ratio |W2V =2WV | as
10%. This is twice the energy ratio for the power-law correlation case.
One can further quantify this as follows. Consider two elliptical galaxies of radii rg

separated by the distance r0. A family of analytic models for spheroidal stellar systems
is de4ned by the density distribution:

��(r) =
�
4


1
r3−�(1 + r)1+� (7)

for 0¡�6 3 [10]. Choosing units in which the total mass and the gravitational con-
stant are both unity, we 4nd the self-gravitational energy of each galaxy as

U1 = U2 = −1
2

(
1

2� − 1

)
= U� ; (8)
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Fig. 1. Behaviour of the correlation energy ratio with the scale R.

and the potential at a distance r0 is

��(r0) =
1

� − 1

[
r�−1
0

(1 + r0)�−1 − 1

]
; (9)

with the mass interior to radius rg being

M�(rg) =
r�g

(1 + rg)�
: (10)

The gravitational energy of the interacting system formed by the two galaxies is given
by

Uint = 2��(r0)M�(rg) : (11)

Assuming we have only the two galaxies in the volume de4ned by 4
r30=3, we should
have Ucorr = Uint . Then Utot = 2U� + Uint and, consequently,

Utot

2U�
= 1 − 2

(
2� − 1
� − 1

) [
r�−1
0

(1 + r0)�−1 − 1

] [
r�g

(1 + rg)�

]
: (12)

In Fig. 2, we present the behaviour of Utot=2U� as a function of r0 (for r0 ¡ 5 h−1 Mpc
and taking rg =30 h−1 kpc). Note that only at very small scales the ratio signi4cantly
increases. Actually, at the galaxy correlation length, the deviation from extensivity is
about 1%. As a comparison, NETS models give ∼ 13%, 17% and 28%, for the cases
1, 2 and 3, respectively, at the same scale, in the more general situation. Thus, a NETS
model with at least 10% of deviation from the strict extensivity condition corresponds
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Fig. 2. Correlation energy ratio for � models. For comparison, the Hernquist’s model is computed for �=2.

to 10 times the deviation in the case of a cell with only two typical elliptical galaxies
interacting within the galaxy correlation length (r0 = 5 h−1).

Using this criterion, NETS 1 and NETS 2 models are well justi4ed for r ¡ 10 h−1 Mpc
and r ¡ 30 h−1 Mpc, respectively, while NETS 3 model is valid at all scales. This
result reinforces the idea of applying the NETS formalism to galaxy clustering phe-
nomena, but clearly indicating the approximate range it will be used, given a speci4c
choice of the free parameters a and �. Hence, the level of nonextensivity strongly
depends on the ansatz (3), which reinforces the need of a deeper discussion of the
meaning of q(r).

3. The physics behind q(r)

Structure formation models try to compute the evolution of cosmic structure from
the very early Universe to the present day. Usually, they are stochastic, in the sense
that random initial conditions are used, with well-speci4ed statistical properties, and
their late evolution may be highly non-linear [11]. Any attempt to compute q(r) from
4rst principles must take into account this complex scenario.
Considering the relevant role played by turbulence in the dynamics of structure for-

mation (e.g. Refs. [12,13]), a natural approach for deriving a meaningful expression
for q(r) is to assume a a la Kolmogorov cascade phenomenology, in which the energy
supplied at large scales by the physical mechanisms acting over structure formation
Pows down until being 4nally dissipated on the smallest scales by viscous processes
[14]. The key ingredient in this “top-down” cascade scenario is the presumption of
the existence, within a certain range of scales, of a scaling 〈vnr 〉 ∼ r�n of the moments
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of the peculiar velocity di6erences vr(x) = v(x + r) − v(x). This scale-invariance can
be rigorously deduced, under assumptions such as local isotropy, from the dynami-
cal equations governing a turbulent Puid [15]. In the present cosmological context,
scale-invariance is well supported by observations [16] and is at the heart of the frac-
tal description of galaxy clustering [4]. If we now assume that the probability density
function (PDF) of peculiar velocity di6erences is described by the Tsallis canonical
distribution and that at suAciently large scales turbulent Puctuations are normally dis-
tributed, then an analytical expression for q(r) can be easily derived [17], in the form
of q ∼ (15 − 21r )=(9 − 15r ), where  = �4 − 2�2 and �p are the structure function
exponents.
This model was successfully applied to hydrodynamics turbulence ([18,19]), where

the entropic parameter represents a direct measure of intermittency. It gives similar
results to those obtained with Eq. (3), albeit only within a restricted range of scales.
Note that, as r → 0, the entropic parameter tends to a 4nite value, which is physically
expected for any model of q(r) [20]. But in this case, Eq. (3) would not provide a
smooth transition from small-scale fractality to large-scale homogeneity, which repre-
sents a major drawback in the present cosmological context.
The problem with such a cascade phenomenology is its description of structure

formation from larger to smaller scales. To support observations, a di6erent and more
compelling model may be obtained from a “bottom-up” fractal cascading scenario.
In this cold dark matter (CDM) dominated Universe scenario, large-scale structures
are formed by gravitational clustering of smaller clumps of matter [20]. This process
eventually leads to strong density Puctuations with self similar density distribution
and a stationary fractal dimension, while enhancing long-range correlations and the
corresponding high-energy tails in the peculiar velocity di6erences in PDFs.
In this context, averaging a Gaussian conditional velocity distribution over all possi-

ble spatio-temporal energy dissipation rate Puctuations and at appropriate scales leads
to a Tsallis peculiar velocity di6erences in PDF and to a closed-form expression for the
entropic parameter [21]. This expression depends on the (discrete) number of degrees
of freedom relevant to represent the local Puctuations. It can be further generalised,
taking the form q ∼ (r + 3)=(r + 1). Considering the lack of observational data for an
unambiguous determination of q(r), we foresee a complementary (and computationally
expensive) approach to gain a deeper insight on the role of the entropic parameter. We
propose to compute estimates of q within a large range of scales directly from N -body
simulations, using a #-CDM cosmological model of gravitational clustering.

4. Summary and conclusions

The basis for clustering statistics in cosmology is the study of galaxy distribution in
the Universe. The analysis of an increasing amount of astronomical data can provide
the correct framework to explain the formation and evolution of large-scale structure
in the Universe. In particular, correlation functions suggest the possibility of describing
the galaxy clustering properties in the context of the multifractal approach. Recently,
RWRR presented a better physical interpretation to this approach by deriving multifrac-
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tality from the NETS formalism. Now, extending their work, we de4ne a quantitative
criterion to use the NETS formalism based on deviations from strict extensivity. As-
suming it should reach at least 10 times the expected deviation level within a cell
containing only two typical galaxies, we obtain the approximate validity domain for
the NETS models: r ¡ 10 Mpc for NETS 1 model, r ¡ 30 Mpc for NETS 2, and at
any scale for NETS 3. The choice of q(r) has a physical meaning in the context of
hydrodynamics turbulence and can be understood as a “bottom-up” fractal cascading,
in conceptual agreement with CDM structure formation models. Although the scenario
we propose is not complete, we should keep in mind that there is not a uni4ed frame-
work to explain galaxy clustering in the Universe. Further numerical developments of
NETS models will be presented in a forthcoming paper [22].
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