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ABSTRACT
In this paper, we raise the hypothesis that the density Ñuctuation Ðeld, which originates the growth of

large-scale structures, is a combination of two or more distributions, instead of assuming that the
observed distribution of matter stems from a single Gaussian Ðeld produced in the very early universe, as
is widely accepted. By applying the statistical analysis of Ðnite-mixture distributions to a speciÐc com-
bination of Gaussian plus non-Gaussian random Ðelds, we studied the case in which just a small depar-
ture from Gaussianity is allowed. Our results suggest that even a very small level of non-Gaussianity
may introduce signiÐcant changes in the cluster abundance evolution rate.
Subject headings : cosmology : theory È galaxies : clusters : general È large-scale structure of universe

1. INTRODUCTION

In general, the problem of structure formation is associ-
ated with the gravitational growth of small density Ñuctua-
tions generated by physical processes in the very early
universe. Also, these Ñuctuations are supposed to build a
Gaussian random Ðeld (GRF), where the Fourier com-
ponents have independent, random, and uniformly dis-d

ktributed phases. Such a condition means that phases are
noncorrelated in space and ensures that the statistical
properties of the GRF are completely speciÐed by the two-
point correlation function or, equivalently, by the power
spectrum which contains information on theP(k)\ o d

k
o2,

density Ñuctuation amplitude of each scale k. This makes
the choice of a GRF the simplest initial condition for struc-
ture formation studies from the mathematical point of view.
At the same time, the GRF simplicity is vindicated by a
great number of inÑationary models that predict a nearly
scale-invariant spectrum of Gaussian density perturbations
from quantum-mechanical Ñuctuations in the Ðeld that
drives inÑation (Guth & Pi 1982). Likewise, the central limit
theorem guarantees a GRF if a wide range of random
physical processes acts on the distribution of matter in the
early universe.

However, a number of mechanisms can generate non-
Gaussian density Ñuctuations. For instance, they arise (1) in
some inÑation models with multiple scalar Ðelds (e.g.,
Salopek, Bond, & Bardeen 1989) ; (2) after phase transitions
when di†erent types of topological defects can be formed
(Kibble 1976) ; (3) by any discrete, random, distributed seed
masses like primordial black holes and soliton objects
(Sherrer & Bertschinger 1991) ; and (4) in astrophysical pro-
cesses during the nonlinear regime where early generations
of massive stars produce shocks which sweep material onto
giant blast waves triggering formation of large-scale struc-
ture (Ostriker & Cowie 1981). Thus, in order to better
understand the process of structure formation, it is neces-
sary to investigate the possibility of the non-Gaussian sta-
tistics contribution to the density Ñuctuation Ðeld.

Because of the difficulty of working with generic sta-
tistical models, the usual approach is to examine speciÐc
classes of non-Gaussian distributions. Examples of these
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e†orts are the studies carried out by (1) Weinberg & Cole
(1992), who studied non-Gaussian initial conditions gener-
ated by a range of speciÐc local transformations of an
underlying Gaussian Ðeld ; (2) Moscardini et al. (1991), who
investigated whether non-Gaussian initial conditions can
help to reconcile the cold dark matter (CDM) models with
observations ; and (3) Koyama, Soda, & Taruya (1999), who
used data on the abundance of clusters at three di†erent
redshifts to establish constraints on structure-formation
models based on s2, non-Gaussian Ñuctuations generated
during inÑation.

In this work, we propose a new approach to this problem,
exploring the hypothesis that initial conditions for structure
formation do not build a single GRF but a combination of
di†erent Ðelds, produced by di†erent physical mechanisms,
whose resultant e†ect presents an arbitrarily small depar-
ture from the strict Gaussianity. The paper is organized as
follows : in ° 2, we introduce the statistical analysis of Ðnite
mixture distributions and present a two-component
mixture model ; in ° 3, we apply the model to the cluster
abundance evolution ; in ° 4, we summarize and discuss our
results.

2. MIXTURE-DISTRIBUTION MODELS : THE

POSITIVE-SKEWNESS CASE

Suppose the density Ñuctuation Ðeld, given by the density
contrast is a random variable which takesd \ [o(r)[ o]/o,
values in a sample space R and that its distribution can be
represented by a probability-density function of the form

p(d) \ a1 f1(d) ] . . . ] a
k

f
k
(d) (d ½ R) , (2.1)

where j \ 1, . . . , k, anda
j
[ 0, a1] . . . ] a

k
\ 1,

f
j
(d) º 0 ;

P
R

f
j
(d)dd \ 1 ; j \ 1, . . . , k .

When this happens, we say that d has a Ðnite-mixture dis-
tribution deÐned by equation (2.1), where the components
of the mixture are . . ., and the mixing weights aref1(d), f

k
(d),

. . ., (e.g., Titterrington, Smith, & Makov 1985). Notea1, a
kthat we are not using here the central-limit theorem. Mathe-

matically, this will be valid only when k ] O and the
weights have similar values, so that one process has no
more importance than the others. We are not making these
hypotheses here, and, consequently, the summation of pro-
cesses will not necessarily converge to a Gaussian.
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Statistical evidence for a small level of non-Gaussianity in
the anisotropy of the cosmic background radiation tem-
perature has been found in the COBE 4-year maps (e.g.,
Ferreira, Magueijo, & 1998 ; Pando, Valls-Gabaud,Go� srki
& Fang 1998 ; Magueijo 2000). Non-Gaussian statistics are
also expected in the framework of biased models of galaxy
formation (Bardeen et al. 1986). In this case, analytical argu-
ments show that non-Gaussian behavior corresponds to a
threshold e†ect superposed on the Gaussian background
(Politzer & Wise 1984 ; Jensen & Szalay 1986). In the same
way, hybrid models show that it is possible for structure to
be seeded by a weighted combination of adiabatic pertur-
bations produced during inÑation and active isocurvature
perturbations produced by topological defects generated at
the end of the inÑationary epoch (e.g., Battye & Weller
1998). Thus, a very compelling way to simplify our model is
to apply equation (2.1) to the combination of only two
Ðelds : a GRF plus a second Ðeld, where the latter will rep-
resent a small departure from the strict Gaussianity. This
can be posed as

p(d)\ af1(d)] (1[ a) f2(d) . (2.2)

The Ðrst Ðeld will always be the Gaussian component, and a
possible e†ect of the second component is to modify the
GRF to have positive and/or negative tails. The parameter
a in equation (2.2) allows us to modulate the relative impor-
tance between the two components. It represents an arbi-
trarily small departure from the strict Gaussianity and can
be the result of some primordial mechanism acting on the
energy distribution. Such a two-component random Ðeld
can be generated by taking where l is a randomd

k
2\ P(k)l2,

number with distribution given by equation (2.2). Then we
have

Sd2(r)T \ V
(2n)3

P
k
P(k)

]
CP

l
[af1(l)] (1[ a) f2(l)]l2dl

D
d3k , (2.3)

where V is the volume of an arbitrarily large region of the
universe. The quantity in the brackets will be deÐned as the
mixture term

Tmix4
P
l

[af1(l)] (1[ a) f2(l)]l2dl , (2.4)

so that for the case in which a is not scaleP(k)mix4 P(k)Tmixdependent. In the same way, the rms mass overdensity
within a certain scale R will be p2(R)mix4 p2(R)Tmix.As an illustration, in this work we explore the case of a
positive-skewness model, where the second Ðeld adds to the
Gaussian component a positive tail representing a number
of rare peaks in the density Ñuctuation Ðeld. A simple way
to obtain this e†ect is to take the well-known lognormal
distribution as the second component. Besides its mathe-
matical simplicity, this distribution seems to play an impor-
tant role over the nonlinear regime for a wide range of
physical scales (e.g., Coles & Jones 1991 ; Plionis & Vard-
arini 1995 ; Bi & Davidsen 1997). Accordingly, our mixture
becomes

f1(l)\
1

J2n
e~l2@2 , f2(l)\

1

lJ2n
e~(ln l)2@2 (2.5)

(for the case of mean zero). Introducing equation (2.5) into
equation (2.4), we Ðnd

Tmix\
P
l

C a
J2n

e~l2@2] (1[ a)

lJ2n
e~(ln v)2@2

D
l2dl . (2.6)

Resolving this integral, we have

Tmix\
C
a ] e2

2
(1[ a)

D
. (2.7)

Hence, if a B 1, then andP(k)mixB P(k) p2(R)mixBp2(R),
which means that a sufficiently small contribution of the
second Ðeld leaves the amplitude and shape of the power
spectrum and the mass Ñuctuation practically unchanged.

3. CLUSTER ABUNDANCE EVOLUTION

The correct framework to describe the evolution of non-
linear objects in the context of this model requires a gener-
alization of the Press & Schechter formalism (Press &
Schechter 1974) in order to take into account the second
Ðeld. Assuming that only regions with will forml [ l

cgravitationally bound objects with mass larger than M by
the time t, the fraction of these objects can be calculated
through

F(M) \
P
lc

=
p(l)dl , (3.1)

where This quantity is transformed into the com-l\ d/p
R
.

oving number density of objects with mass between M and
M ] dM by taking LF/LM and dividing it by Thus,(M/o

b
).

n(M)dM \ 2
o
b

M
L

LM
CP

lc

=
p(l)dl

D
dM , (3.2)

where is the background density, and the number 2o
bcomes from the correction factor which[/0= p(l)dl]~1 \ 2,

takes into account all the mass of the universe. If p(l) is
given by equation (2.2), then equation (3.2) can be written as

n(M)dM \ 2
o
b

M
L

LM
CP

lc

=
[af1(l) ] (1[ a) f2(l)]dl

D
dM .

(3.3)

Now, introducing equation (2.5) into equation (3.3) we have

n(M)dM \
S2

n
Ao

b
M
BC

a
A Ll

c
LM
B
e~lc2@2

] (1[ a)
AL ln l

c
LM

B
e~(ln lc)2@2

D
dM . (3.4)

Following Sasaki (1994), we rewrite equation (3.4) to give
the density of objects with mass in the range dM about M
which virialize at the redshift z and survive until the present
epoch without merging with other systems. It becomes

n(M, z) \ F())
A M
M

*
(z)
B(n`3)@3S2

n
A o

b
M2
B

]
(n ] 3)

6
[aA(M, z) ] (1[ a)B(M, z)] , (3.5)
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where

F())\ 5
2

)
C (1] 32))
(1] 32)] 52)z)2

D
,

A(M, z)\
A M
M

*
(z)
B(n`3)@6

exp
C
[1

2
A M
M

*
(z)
B(n`3)@3D

,

B(M, z)\ exp
G
[1

2
ln
C M
M

*
(z)
D(n`3)@6H2

,

M
*
(z)\ M

*
(1] z)~6@(n`3) .

Equation (3.5) allows us to compare the cluster abundance
evolution with observational data. Clusters, as the most
massive collapsed structures, correspond to rare peaks in
the primordial density Ðeld, and so their abundance is sensi-
tive to the occurrence of non-Gaussianity in the density
Ñuctuation distribution. Also, cluster evolution provides a
constraint on the amplitude of the mass Ñuctuation at 8 h~1
Mpc scale, and on the cosmological density parameter,p8,

through the relation (e.g., Henry &)
m
, p8)

m
0.5 ^ 0.5

Arnaud 1991 ; Pen 1998). In a recent work, Bahcall (1999)
shows that several independent methods based on cluster
data indicate a low-mass density in the universe, )

m
^ 0.2,

and in consequence, breaking the degeneracyp8^ 1.2,
between these parameters.

Here we compare the behavior of the cluster abundance
evolution given by equation (3.5) with data compiled by
Bahcall & Fan (1998). As an example, we plot in Figure 1a
some Ðts to the observational data for two di†erent values
of (0.2 and 1.0). Note that our model is very sensitive to)

mthe parameter a. Even for (1[ a)D 10~3È10~4 (i.e., almost
Gaussian initial conditions), the curves diverge signiÐcantly
from the strict Gaussian cases. This means that even very

small deviations from Gaussianity may introduce a signiÐ-
cant change in the cluster abundance. Actually, the presence
of the second Ðeld tends to slow down the cluster abun-
dance evolution at high redshifts. In the case of )

m
\ 1.0

this e†ect is dramatic for z[ 0.3, while in the case of )
m

\
the di†erence is less pronounced, and it is clearer for0.2

Indeed, by plotting the 68% conÐdence limitszZ 0.6.
around the curve we see that Gaussian and non-)

m
\ 0.2,

Gaussian models are not clearly distinguishable for z¹ 1
(see Fig. 1b). This is related to the small number of obser-
vational points and, possibly, to the simplicity of our model.
However, even considering these caveats, our results seem
to indicate that small deviations from the strict Gaussianity
may play an important role in the cluster abundance evolu-
tion.

4. SUMMARY AND DISCUSSION

We presented the Ðrst results of a study concerned with
small deviations from Gaussianity in the primordial density
Ðeld. Using very simple arguments, we developed a model
based on the combination of two random Ðelds in order to
take into account the non-Gaussianity e†ects. This model
may be physically motivated in the context of hybrid
models, as well as in the framework of biased scenarios for
structure formation. The weighted combined Ðeld involves
a parameter a which modulates the relative importance of
its components. For a B 1, we preserve the amplitude and
shape of P(k) and p(R) almost the same as in the Gaussian
case. At the same time, our results suggest that even very
small values of (1 [ a) can introduce a signiÐcant change in
the cluster abundance evolution. This e†ect seems to be
stronger in high-density universes (at z¹ 1) than in low-
density universes, where the e†ect probably becomes more
important at higher redshifts.

FIG. 1a FIG. 1b

FIG. 1.È(a) Galaxy cluster abundance in the two-component model for with a \ 0.9990 (solid) and a \ 1 (dashed) and for with)
m

\ 0.2 )
m

\ 1.0
a \ 0.9999 (solid) and a \ 1 (dashed). The curves, normalized at z\ 0, correspond to n \ [1.0, h~1 and M [ 8 ] 1014 h~1 TheM

*
\ 1014 M

_
, M

_
.

observational points were taken from Bahcall & Fan (1998). (b) Galaxy cluster abundance in the two-component model for with a \ 0.9990 (solid))
m

\ 0.2
and a \ 1 (dashed). The dotted lines are the 68% conÐdence limits around the non-Gaussian Ðt. The observational points were taken from Bahcall & Fan
(1998).
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The model has some drawbacks. First, it is dependent on
the choice and amplitude of the second component of the
combined Ðeld. Our choice of the lognormal function had a
mathematical criterion of simplicity. A detailed investiga-
tion of the use of di†erent distribution functions as the
second component will be the subject of future works.
However, the reasonable agreement between the model and
the data gives some support to our arbitrary choice. Other
possible limitation of this work comes from the use of the
analytical approximation to the density of nonlinear objects
following Sasaki (1994). A more accurate description of the
cluster abundance evolution requires the utilization of
numerical methods. But Blain & Longair (1993), also

working in the Press & Schecter (1974) framework, found
results numerically similar to SasakiÏs, so we think the use
of this analytical approximation does not introduce any
systematic error. Finally, we should keep in mind that our
results are preliminary and that both theoretical and obser-
vational e†orts are necessary in order to conÐrm or dis-
prove the hypothesis that the primordial density Ðeld can be
described as a slightly non-Gaussian distribution.
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