Estrutura Atômica

Carlos Alexandre Wuensche Processos Radiativos II

- Radiative processes in Astrophysics (G. Ribicki e A. Lightman), cap. 9
- Astrophysics of gaseous nebulae and active galactic nuclei (D. Osterbrock), cap. 2

 Cada faixa do espectro eletromagnético corresponde a um tipo de radiação que excita um tipo de processo físico.

A interação da radiação com a matéria

THE ELECTROMAGNETIC SPECTRUM

Type Of Radiation	Radiated By Objects At This Temperature	Typical Sources
Gamma-rays	more than 10 ⁸ Kelvin (K)	accretion disks around black holes
X-rays	10 ⁶ -10 ⁸ K	gas in clusters of <u>galaxies</u> ; <u>supernova</u> remnants; stellar <u>corona</u>
Ultraviolet	10 ⁴ -10 ⁶ K	supernova remnants; very hot stars
Visible	10 ³ -10 ⁴ K	planets, stars, some <u>satellites</u>
Infrared	10-10 ³ K	cool clouds of <u>dust</u> and gas; planets
Microwave	1-10 K	cool clouds of gas, including those around newly formed stars; the <u>cosmic microwave background</u>
Radio	less than 1 K	radio emission produced by electrons moving in magnetic fields

Microondas e IV

Raios-X e Gama

Raios-X •Frequências: 3x10¹⁶ - ~ 10²⁰ Hz •Comprimentos de onda: 10 nm - 1 pm •Energias quânticas: 124 eV - ~ 1 MeV

ionization

Compton Scattering

Longer

wavelength

X-rav

Raios gama •Frequências: ~ > 10²⁰ Hz •Comprimentos de onda: ~ < 1 pm •Energias quânticas: ~ > 1 MeV

Átomos e moléculas

- A relação entre níveis e subníveis de energia no átomo e as possibilidades de transições são a base da espectroscopia.
- Idéia básica das transições atômicas: séries de Balmer, Lyman, Paschen, Brackett e Pfund, baseadas no modelo de Bohr
- Idéia fundamental do modelo: transições atômicas são discretas e dadas por uma relação do tipo: 1 1 1

$$\frac{1}{\lambda} = R(\frac{1}{A^2} - \frac{1}{n^2})$$

$$E = -\frac{Z_{me}^{2}}{8nh\epsilon_{0}^{2}} = -\frac{13.6Z^{2}}{n^{2}}eV$$

$$r = \frac{n h \epsilon_0}{Z \pi m e^2} = \frac{n a_0}{Z}$$

$$a_0 = 0.529 \text{ Å} = Bohr radius$$

n=4

 $a_0 = 0.0529 nm$ = Bohr radius

n=3

n=1

-3.4 eV

n=2

n=5

A eq. de Schrödinger

Expressão geral $H\Psi = \left(-\frac{h^2}{2m}\nabla^2 + V(r)\right)\Psi = ih\frac{\partial}{\partial t}\Psi$

Com solução geral dada por:

 $\Psi(\vec{r},t) = \Psi_0(\vec{r})e^{-i(E/h)t}$

$$\Psi(\vec{r}) = \Psi(r,\theta,\phi) = R(r)\Theta(\theta)\Phi(\phi)$$

Substituindo a solução na expressão geral:

 $H\Psi_0(\vec{r}) = E\Psi_0(r)$

Energia correspondente a um estado quântico específico, e dada pelo número quântico principal

A eq. de Schrödinger - vários e

Se levarmos em conta a interação entre os elétrons no potencial da equação:

$$V(\vec{r}) = \frac{Ze^2}{r} + \frac{e^2}{r}$$

Explicitando os vários termos, e desconsiderando efeitos relativísticos, nucleares e spin, temos:

$$\begin{pmatrix} -\frac{h^2}{2m} \nabla^2 + Ze^2 \sum_j \frac{1}{r_j} + e^2 \sum_{i>j} \frac{1}{r_{ij}} \end{pmatrix} \Psi = E \Psi$$

$$\boxed{\text{Termo}} \quad \boxed{\text{Termo}} \quad \boxed{\text{Termo}} \quad \boxed{\text{Termo de auto-interação}}$$

Alguns detalhes...

Considerando estados de um único e⁻, para um átomo com N e⁻, podemos usar a aproximação de um e⁻ se movendo sob o potencial do núcleo + potencial médio dos outros N-1 e⁻.

Se o potencial é tratado com simetria esférica, vale a aproximação de campo central, que permite:

- Classificação de estados atômicos
- Tratamento de correlações como perturbações
- Consideração de e⁻ percebendo potenciais diferentes, como se fosse uma carga nuclear "blindada"

Próximo ao núcleo (r \rightarrow 0) $V(\vec{r}) = -\frac{Z}{r} + constante$

Distante do núcleo (r $\rightarrow\infty$) $V(\vec{r}) = -\frac{Z - (N - 1)}{r}$

Aspectos interessantes do mov. sob um potencial central

- Se V(r) é invariante por rotação, $[H, L_i] = 0$
- Autofunções e autovalores de H também o serão de L^2 e L_z
- A equação de autovalor de H será uma E.D. simples, dependendo somente de r.
- Ferramenta geral para descrever um sistema de 2 partículas, sempre que a dependência for somente da posição relativa.
- Extensão quase imediata para sistemas de 3 ou mais partículas

Soluções convenientes, devido à comutação

Como H, L² e L_z comutam, podemos escolher uma base no espaço de estados r, composta de autofunções comuns aos 3 observáveis. Impomos que $\Psi(r,\theta,\phi)$ seja autofunção também de L² e L_z. Da teoria de momento angular, vem que:

Essas soluções correspondem a valores fixos de l, m e são produtos de Ψ e da solução utilizando os harmônicos esféricos

$$H\Psi(\stackrel{\mathbf{I}}{r}) = E\Psi(\stackrel{\mathbf{I}}{r})$$

$$L^2 \Psi(\stackrel{\mathbf{r}}{r}) = l(l+1) \mathbf{h}^2 \Psi(\stackrel{\mathbf{r}}{r})$$

 $L_z \Psi(\stackrel{\mathbf{r}}{r}) = m \mathbf{h} \Psi(\stackrel{\mathbf{r}}{r})$

 $\Phi(\phi) \quad \text{Solution exists} \\ \text{if and only if ...} \quad m_{\ell} = -\ell, -\ell + 1, ... + \ell$

The three spherical coordinates are associated with the three spatial quantum numbers.

$$m_s = +\frac{1}{2}, -\frac{1}{2} \longrightarrow \oint \oint$$

Solução da parte angular $\Psi(r, \theta, \phi) = \frac{1}{r} R(r) Y(\theta, \phi)$

$$Y_{lm}(\theta,\phi) = \sqrt{\frac{2l+1}{4\pi} \frac{(l-|m|)!}{(l+|m|)!}} P_l^m(\cos\theta) e^{\pm im\phi}$$

Harmônicos esféricos (ref., e.g., Cohen-Tannoudji, cap. 7)

Mas também precisamos da solução para a equação radial (outra ED de 2a. ordem)

$$\frac{1}{2}\frac{d^2R_{nl}}{dr^2} + [E - V(r) + \frac{l(l+1)}{2r^2}]R_{nl} = 0$$

No caso puramente Coulombiano, a solução é definida em termos dos polinômios associados de Laguerre

$$R(r)_{nl} = -\sqrt{\left\{\frac{Z(n-l-1)!}{n^2[(l+1)!]^3}\right\}}e^{-\rho/2}\rho^{l+1}L_{n+l}^{2l+1}(\rho)$$
$$E_n = Z^2/2n^2, \qquad \rho = 2Zr/n$$

A solução completa deve, ainda, incluir os estados de spin do e⁻: m₅=± 1/2 (descrição não relativística). As funções de onda correspondentes a esses dois estados são:

$$|1/2 \ge \alpha = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$
$$|-1/2 \ge \beta = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

25

Dependência entre energia do elétron e número quântico orbital n

INPE

Dependência entre energia do elétron e número quântico orbital n

INPE

Semelhança na estrutura orbital (somente um e⁻ na camada externa) sugere o uso da mesma expressão!

A penetração do orbital 1s expõe os orbitais mais externos a uma influência maior do núcleo, tornando-os mais ligados e diminuindo seus níveis de energia associados. No caso do Li, o elétron 2s penetra mais no raio de Bohr e fica menos intenso que o 2p. A mesma coisa acontece com o Na, para o elétron do nível 3s.

INPE

Acoplamento L-S

- Ocorre em átomos leves de vários elétrons
- momentos angulares orbitais se combinam em L (L_{Total} é conservado)
- momentos angulares de spin se combinam em S (S_{Total} é conservado)
- Momento angular total: J=L+S

Acoplamento L-S

- Na aproximação de campo central, a informação contida na Hamiltoniana é degenerada (não inclui explicitamente m_l e m_s).
- Podemos considerar H=H₀+H₁

perturbação (m_l e m_s, interação spin-órbita)

Potencial de ordem 0 (n, l)

$$H_1 = \left[-Ze^2 \sum_j \frac{1}{r} + e^2 \sum_{i>j} \frac{1}{r_{ij}} \right] + H_{so} \equiv H_{es} + H_{so} + \dots$$

- Interação eletrostática causa a subdivisão dos níveis de energia.
- Correção de primeira ordem = remoção da degenerescência!
 Combinação linear de autoestados que representem estados de L e S.

Acoplamento L-S

A origem da subdivisão causada pela interação eletrostática pode ser atribuída ao princípio de exclusão de Pauli e aos momentos angulares L e S (regras de Hund).

- S maior (elétrons com spin alinhado) tende a um nível de energia mais baixo: P. Pauli afasta e⁻ mais uns dos outros, diminuindo E_{es}).
- Os estados de uma dada configuração com L maior (maior alinhamento dos e⁻ que definem o spin orbital) tende a um nível de energia mais baixo: e⁻ alinhados tendem a estar mais afastados, na média, do que quando estão orbitando em direções opostas.

Acoplamento Spin-órbita

- Se Causa da 3a. Regra de Hund:
- Para átomos com menos da metade de um dado nível preenchido, o nível com o menor valor de J (momento angular total: L+S) tende a um nível de energia mais baixo.
- Quando o nível está mais da metade cheio, vale o oposto (maior valor de L tende a um nível de energia mais baixo).
- Razão: o produto escalar S·L é negativo se o spin e o momento angular orbital apontam em sentidos opostos.

Regras de Hund

O esquema de acoplamento LS exige algumas correções para um nível de um dado número quântico principal, conhecidas como "Regras de Hund":

- Quanto maior S (spin total do e⁻), mais baixa a energia. As divisões ocorrem por causa da força de troca entre e⁻ e núcleo
- Quanto maior L (momento orbital total do e⁻), menor a energia da divisão por troca. Isso é consequência do fato que, para momentos orbitais grandes, os e⁻ e o núcleo ficam afastados de forma mais eficiente, aumentndo assim a forca de troca.
- Quanto maior J, maior a energia associada à quebra spin-órbita. Isso é verdadeiro para camadas eletrônicas que estão menos que "meio cheias" (menos que a metade). Para camadas mais cheias que a metade, o oposto é verdadeiro.

Acoplamento Spin-órbita

O acoplamento surge devido à interação entre o spin do elétron e o campo magnético produzido pelo movimento orbital do elétron em torno do núcleo.

The interaction energy if of the form

 $E = \mu \cdot \vec{B}$

like a magnet in an applied magnetic field.

Acoplamento Spin-órbita

Campo magnético do elétron devido ao movimento orbital

$$B = \frac{\mu_0 Zev}{4\pi r^2}$$

Considerando uma órbita circular, expressamos esse movimento em termos do momento angular orbital

$$\vec{B} = \frac{\mu_0 Z e \vec{L}}{4m_e \pi r^3}$$

Acoplamento Spin-órbita

In the lab frame, the electron sees an electric field from the nucleus, but if you ride with the electron, you see a magnetic field caused by the relative motion of the nucleus.

The

magnetic

The effective current from the motion of a nucleus in a circular orbit is

$$I = \frac{\Delta Q}{\Delta t} = \frac{Zev}{2\pi r}$$

The effective magnetic field at the electron is then

$$B = \frac{\mu_0 Zev}{4\pi r^2}$$

field at the center of a circular current loop $B = \frac{\mu_0 I}{2r}$

is.

Acoplamento J-J

- Em elétrons mais pesados, com maior carga nuclear, o acoplamento spin-órbita é tão importante quanto as interações entre spins individuais ou momentos angulares orbitais individuais.
- Nesses casos, spins e momentos angulares orbitais se acoplam para formar um momento angular total para cada elétron.

$$J_1 = L_1 + S_1$$

 $J_2 = L_2 + S_2$
.....
 $J = \sum J_1$

🌶 Configuração das camadas externas de núcleos neutros

Table 9.1

INPE

Neutral atoms

															100	
Atom		K 18	L 2s2p	M 3s 3p 3d	N 484p4d	0 5a	Ground level	Atom		K L M N	N 4j	0 5s5p5d5f		P 6s 6p 6d	Q 78	Ground level
н	1	1					2S.	Ag	47			1			10000	°S,
He	2	2					¹ S ₀	Cd	48			2				'So
Li	3	2	1				2S1	In	49			2 1				2P0
Be	4	2	2				1So	Sn	50			2 2				³ P ₀
B	5	2	2 1				2P0	Sb	51			2 3				4S14
C	6	2	2 2		1	9	³ P ₀	Те	52			2 4				³ P ₂
N	7	2	2 3				*S1	I	53			2 5				² P ⁰ ₁
0	8	2	2 4				³ P ₁	Xe	54			2 6				¹ S ₀
F	9	2	2 5				2P0	Cs	55	-		2 6		1		2S.
Nø	10	2	2 6				¹ S ₀	Ba	56	40		8		2		¹ S ₀
Na	11	2	2 6	1			2S,	La	57	4 1			1	2		2D11
Mg	12			2			¹ S ₀	Ce	58	8	1	2 6	1	2		1G0
AL	13			2 1			2P0	Pr	59	Z	3			2		4I0,
Si	14		10	2 2			3Po	Nd	60		4			2		۵I.
P	15			2 3			"S"	Pm	61		5			2		6H01
S	16	Ne	core	2 4			³ P ₂	Sm	62	34	6			2		7F.
Cl	17			2 5			2P04	Eu	63	A	7			2		*S3+
Ar	18			2 6	10. 10. CAN	0.852	¹ S ₀	Gd	64	8	7	8	1	2		°D,
K	19	2	2 6	2 6	1		2S1	Tb	65	5	9			2		6H%
Ca	20		_		2		¹ S ₀	Dy	66	-	10			2		5J.

Configuração das camadas externas de núcleos neutros

INPE

Sc	21	1	2			² D ₁	Ho	67	11	2				4I9,
Ti	22	5	2			3F2	Er	68 2	12	2				3Ha
V	23	18 3	2			*F11	Tm	69	13	2				2F%
Cr	24		5 1			7S3	Yb	70 %	14	2				¹ S ₀
Mn	25	A core	5 2			6S21	Lu	71	14 1	2				2D11
Fe	26	(2			5D.	Hf	72	14 2 6 2	2	_			3F.
Co	27	7	2			"F.	Ta	73 🗟	3	2				4F.,
Ni	28	8	2			3F.	W	74 0	4	2				⁶ D _o
Cu	29	2 2 6 2 6 10) 1		97.73	2S1	Re	75 3	46+22 5	2				Sal
Zn	30	a construction of the second statement of the second	2			¹ S ₀	Os	76	6	2				*D.
Ga	31		2	1		2Pot	Ir	77	7	2				*F.,
Ge	32	28	2	2		3Po	Pt	78	9	I				3D3
As	33		2	3		*S1	Au	79 2	14 2 6 10	1				2S1
Se	34		2	4		3P2	Hg	80 8		2				18.
Br	35		2	5		2P0,	TI	81 2		2	1			3P9 ~0
Kr	36		2	6		¹ S ₀	Pb	82	46 + 32	2	2			3Р.
Rb	37	2 26 26 1) 2	6	1	2S.	Bi	83		2	3			4S9,
8r	38				2	¹ S ₀	Po	84 \$		2	4			30.
Y	39			1	2	2D14	At	85		2	5			300
Zr	40			2	2	3F2	Rn	86		2	6			18.
Nb	41	36		4	1	°D,	Fr	87	14 2 6 10	2	6		1	28.
Mo	42			5	1	7S.	Ra	88		-			2	18.
Te	43	Kr core		5	2	*S24	Ac	89	46 + 32			1	2	°D.,
Ru	44			7	1	*Fa	Th	90				2	2	3F.
Rh	45			8	1	'Fai	Pa	91		2		ī	2	*K.,
Pd	46		<u></u>	10		¹ S ₀	U	92		3		ī	2	°L3

Princípio da Exclusão de Pauli

Dois elétrons não podem ter os mesmos números quânticos (caso geral para partículas de spin semi-inteiro: FÉRMIONS) Suponhamos 2 e⁻ em dois estados **a** e **b**. A função de onda para eles é: Incompatíveis!!! e- são indistinguíveis

For fermions the negative sign must be used, so that the wavefunction goes to identically zero if the states a and b are identical.

Princípio da Exclusão de Pauli

A função de onda para um subnível ocupado por DOIS elétrons tem que obedecer o princípio de Pauli, ou seja, a incompatibilidade anterior é resolvida por uma combinação linear entre as funções de onda de ambos os elétrons, uma vez que é impossível distingui-los.

Required for
bosons.

$$\psi = \psi_1(a)\psi_2(b) \pm \psi_1(b)\psi_2(a)$$

Probability amplitude that
both states "a" and "b" are
occupied by electrons 1 and
2 in either order.

Algumas aplicações do P. Pauli

Aplicado a átomos Dois **férmions** não podem existir em estados quânticos de energia idênticos

Aplicado a sólidos

Dois **elétrons** em um átomo **não podem números quânticos** idênticos. Isso define a construção da Tabela Periódica Aplicado a estrelas Dois **elétrons** em um sólido **não podem estados de energia** idênticos. Isso leva ao conceito dos níveis de Fermi na teoria de bandas dos sólidos.

Degenerescência dos elétrons governa o colapso de **estrelas** para o estágio de **anã branca** **Degenerescência dos nêutrons** governa o colapso de **estrelas** massivas para o estágio de **estrelas de nêutrons**

Quebra de níveis e perturbações

- Como calcular os termos espectroscópicos de uma dada configuração para estados de uma única partícula?
- Listamos os valores possíveis de m_l e m_s para elétrons acima dos níveis de energia fechados e vemos como construir L e S para eles, obedecendo a indistinguibilidade e o princípio de Pauli.
- Separar elétrons equivalentes (mesmos n e l) de não equivalentes (n e l diferentes, mas mesmos m_l e m_s).

Figure 9.2a Schematic diagram illustrating the terms of energy levels generated by a 4p4d configuration in L-S coupling.

(b)

Figure 9.2b Same as a, but for two p electrons. Dashed levels are absent from the multiplet if the electrons are equivalent (n = n'). (Taken from Leighton, R., 1959, Principles of Modern Physics, McGraw-Hill, New York.)

46

Efeito Zeeman

Quebra dos subníveis devido ao acoplamento de um campo magnético externo com o momento angular orbital do e⁻. Na ausência de **B**, os níveis de energia dependem somente do números quântico principal (emissão em um único λ)

Efeito Zeeman

$$U(\theta) = -\mu \cdot B$$

$$\mu_{orbital} = \frac{-e}{2m_e} L$$

$$U = \frac{e}{2m} L_z B = m_\ell \frac{e\hbar}{2m} B$$

O deslocamento dos níveis de energia é conhecido como efeito Zeeman

$$\Delta E = m_{\ell} \frac{e\hbar}{2m} B = m_{\ell} \mu_B B \qquad \mu_B = Bohr magneton$$

 $\mu_B = \frac{e\hbar}{2m_e} = 9.2740154 \, x \, 10^{-24} J \, / \, T = 5.788382 \, x \, 10^{-5} \, eV \, / \, T$

 $\Delta E = \frac{e}{2m}(\vec{L} + 2\vec{S}) \cdot \vec{B} = g_L \mu_B m_j B \qquad integer$

Magnetic
nteraction
$$\mu_{spin} = -g \frac{e}{2m} \hat{S}$$

Efeito normal:

$$\Delta E = m_{\ell} \frac{e\hbar}{2m} B = m_{\ell} \mu_B B \qquad \mu_B = Bohr magneton$$

Efeito anômalo: o efeito do spin do elétron aumenta a divisão dos níveis de energia e corrige o valor do momento angular total do átomo, criando um quadro coerente para os demais multipletos.

Átomos complexos (sistemas de muitos elétrons)

- Partimos de um conjunto de estados para uma única partícula, especificado pelos 4 números quânticos: n, l, m, m_s
- No caso de n partículas, temos:
 u_a(1)u_b(2)...u_K(n)
- As funções u são os orbitais com parte espacial Ψ_{nlm} multiplicados pelo valor do spin do e⁻.
- Pelo princípio da exclusão de Pauli, dois enão podem ocupar os mesmos orbitais.
- Para e- (férmions), as funções de onda são anti-simétricas

Átomos complexos (sistemas de muitos elétrons)

- Mais possibilidades de combinação de órbitas
 Número de transições muito maior
 maior número de linhas espectrais
- Níveis eletrônicos completos fazem com que o elétron do subnível seguinte seja o responsável pelo espectro do elemento.
- As linhas D do Na, presentes no espectro de Fraunhoffer do Sol, são muito semelhantes ao espectro da série de Lyman.
- O dubleto (divisão) na linha do Na deve-se ao acoplamento do momento magnético do spin do e⁻ com o momento magnético do e⁻ em torno do núcleo. Spins alinhados geram uma energia maior, daí o dubleto.

Átomos complexos

- Essa divisão acontece para todos os átomos para os estados excitados, mas não afeta o estado fundamental.
- Acoplamentos:
 - Momento angular orbital do e- + spin e- (L+S)
 - Spin do núcleo + spin e- (SN+S)
- Duas formas de identificação do spin do e-
 - Quebra das linhas devido ao acoplamento L+S (óptico), razoavelmente intenso
 - 📽 Inversão da direção do spin (rádio), muito fraco

Átomos complexos

- No caso do H, existe ainda o acoplamento entre o spin do núcleo e o spin do e⁻, o que causa a divisão da linha de emissão do H no estado fundamental (estrutura hiperfina, vista anteriormente).
- A diferença de energia causada pelos dois estados de spin do e⁻ é tal que, quando a inversão da orientação do spin do e⁻ ocorre, há a emissão de um fóton de λ =21,1 cm

Átomos ionizados

- Espectros de átomos neutros e ionizados tem assinaturas completamente diferentes.
- Possibilidade de confusão dos espectros (HI e HeII) devido a semelhança no movimento eletrônico.
- E_{orbita} depende de n e de Q^2 .
- Cada série espectral do H tem uma correspondência no He, com a diferença $\lambda_{He} = \lambda_H/4$.
- O espectro de um átomo ionizado é qualitativamente similar ao de um átomo neutro com o mesmo número de elétrons, mas com as linhas deslocadas para o UV.

A estrutura hiperfina do espectro atômico

- Causada pela interação magnética entre o momento angular do núcleo e o momento angular eletrônico do átomo.
- Expresso pela interação F = I + J
 - I é o momento angular do núcleo e J é o momento angular total do átomo

- Efeito de isótopos: diferentes espécies atômicas geram diferentes espectros (núcleo de carga Z + massa dos nêutrons). Só ocorre entre isótopos
- Inversão do estado de spin do e⁻: quebra do subnível s em outros dois níveis, causado pela inversão do estado de spin do e⁻. Ocorre em um único átomo e pode ser percebido por transições atômicas específicas, tais que a orientação de J=L+S muda, relativamente a I.
- Caso especial: Hidrogênio atômico neutro. A diferença de energia entre os estados F=0 e F=1 corresponde a uma frequência de 1420 MHz (λ=21,1 cm). Essas transições são extremamente raras para um dado átomo, mas conseguem ser vistas devido à enorme abundância do Hidrogênio neutro no meio interestelar.

Modificações na Hamiltoniana

Modificações na Hamiltoniana

- Termo hiperfino: H_{hf} (~ 1/2000 H_{SO} ou H_{D})
 - R: vetor posição do e⁻
 - I: momento angular do núcleo
 - S: spin do e^{-}
 - L: momento angular orbital do e⁻
 - δ : resulta da contribuição do campo interno do próton para H_{hf} (termo de contato)

$$H_{hf} = -2\frac{\mu_0}{4\pi} \frac{2\mu_b \mu_n g_p}{\hbar^2} \left\{ \frac{\vec{I} \bullet \vec{L}}{R^3} + 3\frac{(\vec{I} \bullet \vec{R})(\vec{S} \bullet \vec{R})}{R^5} - \frac{\vec{I} \bullet \vec{S}}{R^3} + \frac{8\pi}{3}\vec{I} \bullet \vec{S}\delta(\vec{R}) \right\}$$

Distribuição térmica dos níveis

- Equilíbrio térmico: caso especial em que a população de um determinado nível de energia é determinada somente por T
- 🗣 Em geral, determinação muito mais complicada...
- So caso de E.T., n ∝ g.exp(-E/kT)
 - ¥ g → degenerescência do nível
 - <sup>
 §</sup> E → energia do nível
 - ¥ k → constante de Boltzmann
- 🗣 Nível "zero": estado fundamental
- Sível "i" corresponde à energia E_i

Supondo que N_i é a população do i-ésimo nível e N é a população total do átomo estudado, temos a chamada lei de Boltzmann:

$$N_i = \frac{N}{U} g_i e^{-\beta E_i}$$

 U é a constante de proporcionalidade, ou função de partição, obtida pelas condição que a população total é dada pela soma de átomos em todos os subníveis i:

$$U = \sum_{i} g_{i} e^{-\beta E_{i}}$$

Daí, obtemos:

$$N = \sum_{i} N_{i}$$

A expressão para a eq. de Boltzmann diverge para temperaturas finitas, porque g=2J+1 tende a infinito, enquanto $exp(-\beta E_i)$ tende a uma constante à medida que E se aproxima do contínuo.

- Fisicamente se explica a divergência porque não existe um gás de átomos com componentes a uma distância infinita entre si.
- O átomo atinge o potencial de ionização efetivo para n (no. quântico principal) grande, mas finito, tal que n=n_{max}

$$n_{max}^2 a_0 Z^{-1} = N^{-1/3}$$
$$n_{max} \approx (\frac{Z}{a_0})^{1/2} N^{-1/6}$$

Equação de Saha

- Caso especial da equação de Boltzmann, que envolve a determinação da distribuição de uma espécie atômica entre os vários estágios de ionização.
- Para o caso especial entre o estado fundamental e o primeiro estágio de ionização, temos uma generalização da lei de Boltzmann:

$$dN_0^+(v) = \frac{g}{g_0} \exp\left[-\frac{\chi_I + 1/2m_e v^2}{kT}\right]$$

- dN(v) é o número (diferencial) de íons no estado fundamental com e- livres no intervalo de velocidade entre v e v+dv. χ_I é o potencial de ionização
- $g=g_0^+.g_e$, sendo que $g_e=2dxdp/(h/2\pi)^3$ e $dx=1/N_e$

A distribuição de velocidades do e- é isotrópica e é dada por:

 $dp_1 dp_2 dp_3 = 4\pi m_e^3 v^2 dv$

Assim, a generalização da lei de Boltzmann passa a depender da vel. do e-, e ficamos com:

$$\frac{dN_0^+(v)}{N_0} = \frac{8\pi m_e^3}{h^3} \frac{g_0^+}{N_e g_0} \exp\left[-\frac{\chi_I + 1/2m_e v^2}{kT}\right] v^2 dv$$

Para encontrar o valor total de N₀⁺, integramos sobre v, para encontrar:

$$\frac{N_0^+ N_e}{N_0} = \frac{8\pi m_e^3}{h^3} \frac{g_0^+}{g_0} \left(\frac{2\kappa T}{m_e}\right)^{3/2} e^{-\chi_I/\kappa T} \int_0^\infty e^{-x^2} x^2 dx$$

Em que $x = (m_e/2kT)^{1/2}v$

Resolvendo a integral, obtemos:

$$\frac{N_0^+ N_e}{N_0} = \left(\frac{2\pi m_e \kappa T}{h^2}\right)^{3/2} \frac{2g_0^+}{g_0} e^{-\chi_I/\kappa T}$$

- **E**, sabendo que: $\frac{N_0}{N} = \frac{g_0}{U(T)}$ e $\frac{N_0^+}{N^+} = \frac{g_0^+}{U^+(T)}$
- Obtemos a equação de Saha

$$\frac{N^+ N_e}{N} = \left(\frac{2\pi m_e \kappa T}{h^2}\right)^{3/2} \frac{2U^+(T)}{U(T)} e^{-\chi_I/\kappa T}$$

 Que pode ser facilmente generalizada para quaisquer dois estágios sucessivos de ionização.

Moléculas

- Espectros muito mais complexos que os atômicos
- Possibilidades de vibração e rotação criam mais estruturas na distribuição espectral
- Energia total depende do movimento eletrônico, da distância entre os núcleos (vibração) e da velocidade da molécula como um todo (rotação).
- Ao invés de linhas, pensamos em bandas, cada uma contendo um conjunto de linhas finas que convergem para o centro da banda.
 - Separação entre as bandas individuais: vibração
 - 🖗 Separação entre as linhas de cada banda: rotação
- Separação do espectro de moléculas envolvendo diferentes isótopos é muito mais simples do que usando o espectro atômico!

Exemplo: a molécula de CN

Cometa C/1999 S4 (Linear) http://www.astrosurf.org/buil/us/linear

Exemplo: a molécula de CN

Deep Impact. http://www.aao.gov.au/local/www/jab/deepimpact/

transitions together. Uhler, H. S. and Patterson, R. A., Astrophys. J. 42, 434 (1915).