

Carlos Alexandre Wuensche Processos Radiativos I - 2010

segunda-feira, 26 de abril de 2010

Introdução

Radiação de carga em movimento devido ao campo Coulombiano de outra carga, com as seguintes combinações:

- 📽 Elétron-íon
- 📽 Elétron-pósitron
- Elétron-elétron, íon-íon não produzem bremsstrahlung (momento de dipolo é ZERO).
- Momento de dipolo (e.r) é proporcional ao centro de massa (m.r), uma constante de movimento!
- Elétrons são os emissores primários (a ~ 1/m) e consideramos o e- movendo-se no campo Coulombiano do íon fixo.

Introdução

- Significado: radiação de freiamento
- Também conhecida como emissão livre-livre (freefree emission)
- Como de praxe, tratamento completo envolve efeitos quânticos, mas o tratamento clássico justifica-se em muitos e a dependência funcional do efeito com os parâmetros físicos é a mesma que no caso quântico.
- Tratamento quântico: essencial para derivar a distribuição de fótons em altas energias
- O tratamento inicial para os casos clássico e quântico é idêntico, de modo que podemos começar tratando ambos simultaneamente.

Metodologia

- Bremsstrahlung clássico, derivado a partir da Força de Lorentz (Coulombiana), adicionando os termos de correção conforme necessário
- Sceleração do e⁻ é conhecida... calculamos o par de Fourier para determinar o espectro de radiação emitida
- Integramos o resultado sobre o parâmetro de colisão (b_{max} e b_{min})
- No caso relativístico, temos que transformar o resultado para o sistema de coordenadas do laboratório

Metodologia II

- Uma análise semiquantitativa deve fornecer as seguintes quantidades, nessa ordem:
 - 🞐 energia radiativa emitida por um único e-
 - [©] relação entre v_e, b e w
 - potência emitida, no intervalo v e v+dv, por todos os ede diferentes velocidades (dist. M-B) que colidem com um único íon
 - potência emitida, na frequência v, por todas as colisões em um dado volume, que é a emissividade j_v(v,T)
 - emissividade integrada em frequência j(T)
 - intensidade específica I(v,T) em termos da espessura da linha de visada do plasma

Fig. 5.1: Cloud of plasma (ionized gas) giving rise to photons owing to the near collisions of the electrons and ions. The electrons are accelerated and thus emit radiation in the form of photons. The line-of-sight thickness of the cloud is Λ .

Aceleração do elétron

Note que, para vt >> b, o efeito do campo sobre o e- desaparece e a emissão bremsstrahlung também!

Transformadas de Fourier

$$a_{||}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\gamma Z e^2 v t}{m_e [b^2 + (\gamma v t)^2]^{3/2}} e^{i\omega t} dt$$
$$a_{\perp}(\omega) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\gamma Z e^2 b}{m_e [b^2 + (\gamma v t)^2]^{3/2}} e^{i\omega t} dt$$

Trocando as variáveis: x = yvt/b e y = wb/yv

$$a_{||}(\omega) = \frac{1}{2\pi} \frac{Ze^2}{m_e \gamma bv} \int_{-\infty}^{+\infty} \frac{x}{(1+x^2)^{3/2}} e^{\frac{i\omega v}{\gamma v t}} x dx = \frac{1}{2\pi} \frac{Ze^2}{m_e \gamma bv} I_1(y)$$

$$a_{\perp}(\omega) = \frac{1}{2\pi} \frac{Ze^2}{m_e bv} \int_{-\infty}^{+\infty} \frac{x}{(1+x^2)^{3/2}} e^{\frac{i\omega v}{\gamma v t}} x dx = \frac{1}{2\pi} \frac{Ze^2}{m_e \gamma bv} I_2(y)$$

 $I_1(y) = 2iyK_0(y) e I_2(y) = 2yK_1(y)$ de Bessel

O espectro de radiação

O espectro de radiação do elétron com o núcleo carregado pode, então, ser escrito como:

$$\begin{split} I(\omega) &= \frac{2e^2}{3\pi c^3} [|a_{||}(\omega)|^2 + |a_{\perp}(\omega)|^2] \\ &= \frac{2e^2}{3\pi c^3} (\frac{1}{2\pi})^2 (\frac{Ze^2}{m_e bv})^2 [\frac{1}{\gamma^2} I_1^2(y) + I_2^2(y)] \\ &= \frac{Z^2 e^6}{6\pi^3 c^3 m_e^2 v^2 b^2} [\frac{1}{\gamma^2} I_1^2(\omega b/\gamma v) + I_2^2(\omega b/\gamma v)] \end{split}$$

Esse é o espectro resultante de uma única interação de 1 ecom um núcleo, com parâmetro de impacto b.

Espectro no limite assintótico

- Sabemos que y = wb/yv é um parâmetro adimensional, com o numerador e denominador tendo unidades de velocidade
- Podemos definir os limites de validade para os argumentos das funções de Bessel (ver, p. ex., Abramowitz e Stegun) em termos do tempo de interação do elétron com o núcleo:

$$F = y \leftrightarrow 1 \to K_0(y) = -\ln(y); K_1(y) = 1/y$$

$$\frac{1}{2}$$
 y >> 1 \rightarrow K₀(y) = K₁(y)=($\pi/2y$) ^{$\frac{1}{2}$} exp(-y)

- Para frequências altas (y >> 1) temos um corte exponencial no espectro
- Para frequencias baixas (y << 1), o espectro é praticamente plano

1:
$$I(\omega) = \frac{Z^2 e^6}{3\pi^2 c^3} \frac{\omega}{m_e^2 \gamma b v^3} \left[1 - \frac{1}{\gamma^2}\right] \exp\left(-\frac{2\omega b}{\gamma v}\right)$$

so corte exponencial mostra que a potência emitida cai rapidamente para frequencias maiores que w ≈ γvb

$$\bigcirc \mathbf{y} \leftrightarrow \mathbf{1}: \qquad I(\omega) = \frac{2Z^2 e^6}{3\pi^3 c^3} \frac{\omega^2}{m_e^2 \gamma^2 v^4} [\frac{1}{y^2} - \frac{\ln^2(y)}{\gamma^2}] \\ = \frac{2Z^2 e^6}{3\pi^3 c^3} \frac{1}{m_e^2 b^2 v^2} = \text{cte.}$$

- ^{*} Como, para wb « γν, o segundo tempo no colchete desaparece, I(w) reduz-se a uma constante (praticamente produzido pela emissão perpendicular à linha de visada, que não varia)
- Aproximação "ótima": espectro plano para frequencias menores que ω = γν/b, e com queda exponencial a partir daí.

/ >>

Figure 3.3. Spectrum produced in the Bremsstrahlung process. The spectrum is flat up to a cutoff frequency ω_{cut} , and falls off exponentially at higher frequencies.

Dependência com os parâmetros de impacto

- Até agora, a análise é geral, não particularizando para casos não-relativísticos, uma vez que ela foi feita no sistema de referência do elétron
- Se o e- move-se relativisticamente, a densidade de núcleos aumenta de um fator γ (N'= γN), devido à contração relativística do espaço e o número de encontros por segundo é N'v
- O espectro de radiação no sistema de referência do e⁻ é calculado integrando-se I(ω), para um e⁻, vezes o número de encontros (N'v) pelos diversos íons no plasma (N'= γN) em torno do parâmetro de impacto

O cenário astrofísico...

- Regiões emissoras de bremsstrahlung são, em geral, plasmas quentes.
- e⁻ sofrem grandes acelerações nas colisões
 Coulombianas, emitem muitos fótons e escapam da nuvem, caso esta seja opticamente fina.
- Energia irradiada em uma única colisão pode ser aproximada por emissão de dipolo (fórmula de Larmor)
- Frequência característica da emissão é função do tempo de colisão, velocidade do e- e parâmetro de impacto

O cenário astrofísico...

- Frequência característica da emissão é função do tempo de colisão, velocidade do e- e parâmetro de impacto
- Energia total emitida é função da densidade iônica da integração sobre o intervalo de velocidades de uma distribuição Maxwelliana (emissividade volumétrica j_v(v))
- Maior parte da emissão em frequências hv ≤ kT!!!!
- Integração de j_v(v) sobre todas as frequências e sobre o volume do plasma nos dá a luminosidade da nuvem
- Integrando essa luminosidade ao longo da linha de visada obtemos a intensidade específica (diretamente mensurável).

O cenário astrofísico...

- A intensidade específica é proporcional à medida de emissão (emission measure - EM) que é a integral na linha de visada do produtos das densidades de e- e íons.
- A integração da intensidade específica sobre todo o ângulo sólido da fonte fornece a densidade de fluxo espectral S
- Medidas do espectro produzem dois parâmetros físicos essenciais para caracterizar a região emissora: a temperatura e a medida de emissão, independente da distância à nuvem.

Onde observamos isso?

- Associação imediata com regiões quentes!
 - 🖗 Atmosferas estelares
 - Regiões centrais de AGNs
 - 📽 Objetos acretando matéria
 - Regiões HII, em que o gás circundante é ionizado pelos fótons UV da estrela (emissão do óptico até rádio)
 - Aglomerados de galáxias (bremsstrahlung em raios X)

Bremsstrahlung térmico
 Por construção, esse é um caso NÃO-RELATIVÍSTICO
 Podemos desprezar o fator γ na equação

$$I(\omega') = \frac{4Z^2 e^6}{3\pi^2} \frac{\gamma N}{c^3 m_e^2 v} \ln(\frac{b'_{max}}{b'_{min}})$$

- e definir b_{max} e b_{min}. Não vamos resolver a eq. para valores de b_{max} que caiam na região exponencial; ficaremos no "platô"...
 - 🞐 b_{max}=v/w para não entrar na exponencial
 - b_{min}=Ze²/mv², limite para velocidades baixas (vale a aproximação de pequenos ângulos)

segunda-feira, 26 de abril de 2010

Para calcular a emissão de um gás à temperatura T, ponderamos a distribuição de velocidades dos e-

$$N_{e}(v)dv = 4\pi N_{e} \left(\frac{m_{e}}{2\pi\kappa T}\right)^{3/2} v^{2} e^{-\frac{m_{e}v^{2}}{2\kappa T}} dv$$

em que 4πv²dv é o elemento de volume no espaço de velocidades. Uma solução correta, somente em termos de ordens de grandeza, pode ser obtida se substituirmos (1/2)m_ev²=3/2κT na expressão para I(w) obtida em função dos parâmetros de impacto.

$$I(\omega') \approx \frac{Z^2 e^6 N N_e}{3\sqrt{3}c^3 m_e^2} (\frac{m_e}{\kappa T})^{1/2} g(\omega, T)$$

Fator de Gaunt: substitui, adequada//, o termo ln(b_{max}/b_{min}) integrado sobre as velocidades 22

- Sem altas frequências (hv >> kT), o corte no espectro ocorre devido à queda exponencial $\exp (\hbar \omega / \kappa T)$, refletindo a pequena população de e- na cauda Maxwelliana
- A integração de I(ω') nos dá a emissividade do plasma em bremsstrahlung (erg.s⁻¹.cm⁻³.Hz⁻¹):

$$\epsilon_{\nu} = \frac{32\pi e^6}{3m_e c^2} \left(\frac{2\pi}{3\kappa m_e}\right)^{1/2} T^{-1/2} Z^2 N N_e g(\nu, T) e^{-h\nu/\kappa T}$$

= 6,8 × 10⁻³⁸ T^{-1/2} Z² N N_e g(\nu, T) e^{-h\nu/\kappa T}

Para frequências muito baixas, o fator de Gaunt tem uma dependência logarítmica com a frequência,

- Sem altas frequências (hv >> kT), o corte no espectro ocorre devido à queda exponencial $\exp (\hbar \omega / \kappa T)$, refletindo a pequena população de e- na cauda Maxwelliana
- A integração de I(w') nos dá a emissividade do plasma em bremsstrahlung (erg.s⁻¹.cm⁻³.Hz⁻¹):

Raios X
$$\rightarrow$$
 $g(\nu, T) = \frac{\sqrt{3}}{\pi} \left[\ln(\frac{32\kappa^3 T^3}{\pi m_e e^4 \nu^2 Z^2}) - \gamma_{Euler}^{1/2} \right]$
Rádio \rightarrow $g(\nu, T) = \frac{\sqrt{3}}{\pi} \left[\ln(\frac{\kappa T}{h\nu}) \right]$

Para frequências muito baixas, o fator de Gaunt tem uma dependência logarítmica com a frequência,

- Para frequências altas (hv >> kT), o fator de Gaunt é da ordem de (hv/kT)^{1/2}, derivado das aproximações assintóticas feitas para as funções de Bessel
- A taxa total de perda de energia pelo plasma por emissão bremsstrahlung é dada por

 $\frac{1}{2}$ -(dE/dt) = 1,435x10⁻²⁷ Z²T^{1/2}g(v,T)NN_e

Valores aproximados para o fator de Gaunt situam-se entre 1 e 1,5 (g_{médio}~1,2)

Figura 3.2 - Fórmulas analíticas aproximadas para o fator de Gaunt $\langle g_{ff}(v, T) \rangle$ utilizadas em Bremsstrahlung térmico. $\langle g_{ff}(v, T) \rangle$ é denominado Ĝ na figura e a unidade de energia é o Ry=13,6 eV. Fonte: G. Ribicki & A. Lightman, "Radiative Processes in Astrophysics", Wiley(1979).

segunda-feira, 26 de abril de 2010

25

Figura 3.6 - Efeito da profundidade óptica no espectro Bremsstrahlung. A auto-absorção modifica o espectro em baixas frequências, com um comportamento obdecendo à lei de Rayleigh-Jeans para uma curva de corpo negro. Este é um espectro típico de gás denso e ionizado, tal como encontrado em regiões de formação estelar.

Licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

Emissão BMST em altas energias

- Aglomerado de Coma: BMST emitido por gás quente na região intraaglomerado e causado pelo campo elétrico dos prótons agindo sobre os e⁻
- \sim L ~ 10³⁶ a 10³⁸ W erg.s (10¹¹ 10¹² L_{Sol})

Optico

Raios X