

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Credit: NASA, ESA, P. Oesch (University of Geneva), and M. Montes (University of New South Wales)

Evolução Estelar II Ast-202-3

Modelagem estelar e polítropos

Formação estelar

Carlos Alexandre Wuensche INPE Divisão de Astrofísica <u>ca.wuensche@inpe.br</u>

Modelagem estelar e polítropos

Leitura recomendada

 \checkmark Evolution (2nd ed.). Springer (2012)

✓ Caps. 19 e 22

- \checkmark Structure and Evolution. Springer (1994)
 - ✓ Cap. 2 a referência ao programa ZAMS está ali.

R. Kippenhanhn, A. Weigert, A. Weiss. Stellar Structure and

C. Hansen; S. Kawaler. Stellar interiors: Physical Principles,

Princípios básicos

Massa total, composição química, densidade

Temperatura, pressão, luminosidade, opacidade \checkmark

Para construir um modelo estelar é necessário conhecer:

C. A. Wuensche (2022)

- As relações cruzadas abaixo e suas derivadas são usadas na elaboração dos modelos numéricos
- $P = P(\rho, T, X)$
- $E = E(\rho, T, X)$
- $\varkappa = \kappa(\rho, T, X)$
- ε = ε(ρ, T, X)
- modelos.

Хé a composição química e, partir das grandezas Р, Е, к e p, integramos as equações para gerar diferentes

C. A. Wuensche (2022)

As equações da estrutura estelar podem ser escritas nas formas:

 GM_r dP $\frac{dr}{dr} = -\frac{r^2}{r^2}$ $\frac{dM_r}{dr} = 4\pi r^2 \rho$ $\frac{dL_r}{dr} = 4\pi r^2 \rho \epsilon$

Mecanismo de transferência de energia

Transferência radiativa Convecção adiabática Sendo que Critério de Ledoux $abla_{rad} < abla_{ad} + rac{arphi}{\delta} abla_{\mu}$

1

2

3

$\nabla_{rad} = \frac{3}{16\pi ac} \frac{P}{T^4} \frac{L}{GM(r)}$ $\nabla = \nabla_{rad}, \text{ se } \nabla_{rad} \leq \nabla_{ad}$ $\nabla < \nabla_{rad}, \text{ se } \nabla_{rad} > \nabla_{ad}$

 $\nabla = \frac{d(\ln T)}{d(1-T)} = -\frac{r^2 P}{d(1-T)} = -\frac{1}{2} \frac{dT}{dT}$ d(ln P) $GM(r)\rho T dr$

Condições de contorno Centro: $M_r = 0$, $r = L_r = 0$ ✓ Superfície: $M_r = M_{total}$, $\rho = P_r = 0$

solução real.

Princípios básicos

Image Em geral, embora diversos modelos numéricos possam ser calculados, somente um deles é considerado uma

Equações de estado politrópicas

- Solução clássica encontrada no trabalho de Chandrasekhar (1939).
- Definição formal: Modelos pseudo-estelares onde se supõe que valham relações semelhantes à eq. de estado $P = P(\rho^n)$
- Não são feitas suposições sobre transferência de energia ou eq. térmico.

Eqs. de estado politrópicas

- \checkmark $\rho = \rho(P)$.
- Nesse caso, tratamos as estrelas através das eqs. de equilíbrio \checkmark hidrostático e de Poisson:

- Podemos deriver uma equação para P e p, integrando a \checkmark eq. de transferência radiativa.
- Algumas manipulações algébricas levam à derivação da \checkmark chamada relação politrópica:

Ideia: remover a parte "energética" das equações, via eq. de estado

$$\frac{dP}{dr} = -\frac{d\Phi}{dr}\rho$$

$$\frac{\Phi}{r} = 4\pi G\rho$$

$$5.1$$

$$5.2$$

$$P = K\rho^{\gamma} = K\rho^{1+1/n}$$

C. A. Wuensche (2022)

Podemos explorar casos conhecidos com a eq. politrópica: ✓ Estrela totalmente convectiva:

 $T \sim P/\rho$, logo $P \sim \rho^{5/3}$

✓ Esfera gasosa homogênea $\rightarrow \rho = K_1 P^{1/\gamma}$, para $\gamma \rightarrow \infty$, $\rho = K_1(constante)$

- ignoramos transporte radiativo, e temos $\nabla_{ad} = \frac{2}{5}$, logo, ao longo do raio da estrela, $T \sim P^{2/5}$ e, para uma eq. de estado com u constante:

C. A. Wuensche (2022)

Vantagens de usar relações politrópicas: A eq. de estado assume uma forma simples, do tipo $P = K \rho^{\gamma}$

✓ A eq. de estado contém, indiretamente, a temperature (no caso de um gás ideal) mas a relação adicional entre T e P (cond. adiabática) permite criar uma relação politrópica, com K sendo o parâmetro livre.

✓ Problemas...

✓ Automaticamente a temperatura é estratificada, na forma de T = T(P).

Eqs. de estado politrópicas

 \checkmark temperatura e pressão no interior estelar

$$\frac{d\Phi}{dr} = -\gamma K \rho^{\gamma-2} \frac{d\rho}{dr} \quad \boxed{8}$$

 \checkmark para Φ :

$$\frac{d^2\Phi}{dr^2} + \frac{2}{r}\frac{d\Phi}{dr} = 4\pi G(\frac{-\Phi}{(n+1)K})^n$$
 [10]

 \checkmark Lane-Emden.

$$\frac{1}{\xi^2} \frac{d}{d\xi} \left[\xi^2 \frac{d\theta}{d\xi} \right] = -\theta^n$$

Eqs. de estado politrópicas

Partindo da condição de eq. hidrostático (5) e usando a relação politrópica, encontramos EDO que descreve adequadamente as condições de

$$\rho = \left(\frac{-\Phi}{(n+1)K}\right)^n \qquad 9$$

Substituindo (9) no lado direito da eq. de Poisson (5) obtemos uma EDO

que, com algumas parametrizações adequadas é transformada na eq. de

C. A. Wuensche (2022)

Com as seguintes substituições: \checkmark

$$\xi = Ar, \quad A^2 = \frac{4\pi G}{(n+1)^n K^n} (-\Phi_c)^{(n-1)} = \frac{4\pi G}{(n+1)K} \quad \boxed{12}$$
$$\theta = \frac{\Phi}{\Phi_c} = (\frac{\rho}{\rho_c})^{1/n} \qquad \qquad \boxed{13}$$

Soluções de interesse devem ser finities
$$\xi(0)=1$$
 e $\frac{d\theta}{d\xi}=0$. Na superfície, $\theta(\xi)$ -

- \checkmark valor de n são conhecidos como polítropos de índice n. As soluções são as chamadas soluções de Lane-Emden.
- Soluções analíticas existem somente para n=0, 1, e 5. \checkmark

Eqs. de estado politrópicas

itas em ξ =0, e ter as condições de contorno $\rightarrow 0.$

Modelos correspondentes às soluções da equação de Lane-Emden para um certo

- ordinária não relativística (n=3/2)
- Chandrasekhar usou esses modelos para descrever estrelas não \checkmark polítropo com n=3 teria a forma:
- E, no caso de uma anã branca (com e- degenerados...) \checkmark $M_{Ch} = \frac{5,836}{\mu_e^2}$

Eqs. de estado politrópicas: a massa limite de Chandrasekhar

É possível usar os modelos politrópicos para descrever uma estrela com o núcleo composto de matéria degenerada relativística (n=3) e matéria

convencionais e fazer o primeiro modelo de uma anã branca. Um

$$M = 4\pi (-\frac{\theta'}{\xi})\xi^{3} (\frac{K}{\pi G})^{3/2}$$

$$\frac{36}{-M_{\odot}} = 1,459 \ M_{\odot}$$

- \checkmark de objetos compactos!
- No caso de considerarmos o termo de inércia na eq. (5.1), temos: \checkmark

$$\frac{\partial v_r}{\partial t} + v_r \frac{\partial v_r}{\partial r} + \frac{\partial P}{\partial r} + \frac{\partial \Phi}{\partial r} = 0$$

 \checkmark ou $\gamma = \gamma_{ad} = \frac{1}{3}$... Eqs. de estado politrópicas: colapso

Os casos discutidos anteriores partem da eq. de equilíbrio hidrostático e de Poisson e consideram um sistema em equilíbrio. Entretanto, é possível também modelar polítropos em colapso e aplicar os conceitos ao estudo

Consideramos um polítropo relativístico, de matéria degenerada, com n=3

- Realizamos as substituições equivalentes a (12) e (13), com a(t) equivalente \checkmark a 1/A na eq. (12). Nesse caso, ξ é independente do tempo, e a dependência fica contida em a(t).
- Introduzimos também um potenc \checkmark com a condição $\Psi = 0$ quando ξ $r = a(t)\xi, \quad v_r = \dot{a}\xi$ $av_r = a\dot{a}\xi = a\frac{\partial\Psi}{\partial r} =$

 \checkmark

$$\frac{d\Psi}{dt} = \frac{\partial\Psi}{\partial t} + v_r \frac{\partial\Psi}{\partial r} = \frac{\partial\Psi}{\partial t} + (\dot{a}z)^2$$

Eqs. de estado politrópicas:

tial
$$\psi$$
 para a velocidade, tal que $v_r = \frac{\partial \Psi}{\partial r}$
= 0:
 $\xi \qquad \Psi = \frac{1}{2}a\dot{a}z^2$
 $\frac{\partial \Psi}{\partial \xi}$
17

E a derivada total de Ψ no sistema de referência comóvel (do polítropo) é:

C. A. Wuensche (2022)

Com as novas variáveis, reescrevemos a eq. de Poisson e a eq. de \checkmark continuidade da seguinte forma:

$$\frac{1}{\xi^2} \frac{\partial}{\partial \xi} \left(\xi^2 \frac{\partial \Psi}{\partial \xi}\right) = 4\pi G \rho a^2$$
$$\frac{1}{\rho} \frac{d\rho}{dt} + \frac{1}{a^2 \xi^2} \frac{\partial}{\partial \xi} \left(\xi^2 \frac{\partial \Psi}{\partial \xi}\right) \equiv \frac{1}{\rho} \frac{d\rho}{dt} + 3\frac{\dot{a}}{a} = 0$$

 \checkmark

"setor"

"setor"
temporal
$$\frac{3}{4} \frac{(\pi G)}{K}$$

 $6 \frac{g(\xi) + \xi^2}{\xi^2}$

Eqs. de estado politrópicas: colapso

19

20

Após alguma álgebra, chegamos às soluções que envolvem a(t) e ξ :

C. A. Wuensche (2022)

✓ Para $\lambda > \lambda_m$, $\rho(r)$ não tende a zero para valores finitos do raio...

- ✓ Soluções finitas para $0 < \lambda \leq \lambda_m$, e para valores pequenos de λ (tipicamente

Fonte: KWW (cap. 19)

- Interpretação do "colapso politrópico" (n=3): \checkmark
 - ✓ Situação de equilíbrio independe do raio
 - ✓ Se P descresce ligeiramente (por um aumento de K, ver sol. na pág. 229 do KKW), a esfera de gás começa a contrair – processo descrito por (21) e (22)
 - $\checkmark \lambda$ é uma medida do desvio do E.H. causado pela redução de K

Eqs. de estado politrópicas: colapso

Soluções numéricas

Métodos utilizados

- ✓ Shooting (integrador Runge-Kutta): integração em camadas, da origem para a superfície.
- ✓ Método de ajuste: integra simultaneamente de dentro para fora e vice-versa, e testa a convergência de ambas as soluções em algum ponto interno (em geral = R/2).
- ✓ Método de Henvey (integrador Newton-Rapson.

- Um exemplo simples do uso de polítropos para fazer um "pseudo-modelo" estelar é o modelo de Eddington
- Ele incorpora, de maneira aproximada, a equação de transferência radiativa e a equação de energia.
- Partimos de uma situação não-convectiva, em que:

O modelo de Eddington

 $\nabla = \frac{d \ln T}{d \ln P} = \frac{3}{16\pi ac} \frac{P\kappa}{T^4} \frac{L_r}{GM_r}$

Desenvolvendo essa equação para o gradiente estelar, vamos chegar na relação:

$$1 - \beta(r) = \frac{L}{4 - C} \left\langle 1 \right\rangle$$

- raios.
- Utilizamos como opacidade:

$$\frac{L}{4\pi cGM} \langle \kappa \eta(r) \rangle$$

em que κ é a opacidade do interior estelar e η é a relação entre as taxas de geração de energia L_r/M_r para diferentes

$$\kappa_{e} + \kappa_{0} \rho T^{-3,5}$$

C. A. Wuensche (2022)

- \square Opacidade κ cresce para o exterior se a densidade não decresce suficientemente rápido!
- que kl/m é constante ao longo do raio da estrela.
- \checkmark Nesse caso, $\beta \approx$ constante!

 $\nabla \eta(r)$ é proporcional à taxa de geração de energia e, na SP, ela tende rapidamente a 1, por causa do expoente positivo de ε .

Solução simples se consideramos uma estrutura de camadas em

 \checkmark pressão de radiação,

$$P = \frac{\kappa}{\mu m_H} \rho T + \frac{a}{3} T^3 = \frac{\kappa}{\mu m_H \beta} \rho T, \quad \beta = \frac{P_{gas}}{P}$$
^[27]

vamos chegar numa relação para equação de estado politrópica, da forma: \checkmark $P = \left[\frac{3}{a}\left(\frac{\kappa}{\mu m_{H}}\right)\right]$ 28

Em que definimos a "constante politrópica K" como: \checkmark $K = \left[\frac{3}{a}\left(\frac{1}{\mu r}\right)\right]$

C. A. Wuensche (2022)

Trabalhando com as expressões para a pressão de um gás perfeito e

$$(\frac{1}{2})^4 \frac{1-\beta}{\beta^4}]^{1/3} \rho(r)^{4/3}$$

$$\frac{\kappa}{m_H})^4 \frac{1-\beta}{\beta^4}]^{1/3}$$

26

A pressão de radiação, reescrita em termos de β , fica: \checkmark

$$P_{rad} = \frac{1-\beta}{\beta} P_{gas} = \frac{1-\beta}{\beta} \left(\frac{\kappa}{\mu m_H}\right) \rho T^4 = \frac{1}{3} a T^4$$
^[30]

Uma expressão útil para a temperatura pode ser derivada das equações \checkmark (27) e (28):

$$T(r) = \left[\frac{3}{a}\left(\frac{1-\beta}{\beta}\right)\left(\frac{\kappa}{\mu m_H}\right)\right]^{1/3} \rho(r)^{1/3}$$
 31

Podemos também estimar a massa para o modelo de Eddington sabendo \checkmark que, para um polítropo com n=3, a massa total só depende do valor de K:

$$M = \left(\frac{K}{0,3639G}\right)^{1/2} \to \frac{M}{M_{\odot}} = \frac{18.1}{\mu^2} \frac{(1-\beta)^{1/2}}{\beta^2}$$

32

C. A. Wuensche (2022)

- \checkmark $(\beta \rightarrow 1)$
- Quando a massa é muito grande, a pressã \checkmark
- A contribuição das duas pressões é igual \checkmark
- \checkmark radiação.
- Falhas no modelo: \checkmark
 - são parametrizados.
 - energia e calor.

De acordo com (32), a pressão do gás predomina quando a massa é muito pequena

ăo de radiação domina (
$$eta
ightarrow 0$$
)
quando $eta
ightarrow 1/2$, ou seja, ${M\over M_{\odot}}=51/\mu^2$

Para M/M_o = 1 e μ ~0.62 (valor solar), $\beta \approx 0,9995$, e podemos desprezar a pressão de

✓ Ele não fornece valores absolutos para as grandezas secundárias, uma vez que o raio e a massa

Não se pode resolver o problema do modelo estelar sem atacar as equações de transporte de

Vesse sentido, o modelo é incompleto e só admite uma solução adequada se especificamos M e R.

A abordagem para modelos realistas!

Modelos realistas strelas realistas

Atacamos duas regiões:

Caroço central, mais denso. \checkmark

Envelope rarefeito (convectivo ou radiativo). \checkmark

Expansão central

- Solução de singularidades nas equações da estrutura estelar quando R \implies 0?
- É necessário que as soluções sejam regulares na origem.
- Expansão de r em séries, em torno do ponto r=0
- ✓ Transferência de energia: convecção e/ou radiação

Envelope radiativo

Envelope?

- Região tênue que envolve o núcleo degenerado das supergigantes vermelhas...
- ✓ Camada finíssima não degenerada que envolve o núcleo totalmente degenerado de uma anã branca
- Para essa abordagem, envelope é a porção da estrela que começa na fotosfera, com massa desprezível, em eq. hidrostático e que não gera energia por reações nucleares ou contração gravitacional
 - ✓ Definição da fotosfera? Superfície estelar?
 - ✓ Região de pressão zero?

 \checkmark Eddington.

 \checkmark

$$✓$$
 κ = 0,34 cm²/g

 $\rho_{\text{press}}=10^{-6} - 10^{-7} \text{ g/cm}^3$

A discussão do limite físico do envelope radiativo leva à luminosidade limite que mantém a estrela em equilíbrio: a luminosidade de

 $L_{Edd} = \frac{4\pi cGM}{\kappa}$

Valores típicos para estrutura em equilíbrio hidrostático e a opacidade, considerando envelope radiativo em estrelas do tipo solar

Estrelas totalmente convectivas

- Opacidade superficial dominada por H- (hidrido) \checkmark
- \checkmark Equação politrópica P = K T^{5/2}
- Esse quadro representa uma fotosfera de onde escapa a \checkmark radiação visível, seguida de uma tênue camada radiativa e, em seguida, a zona convectiva.
- Essa estrutura representa bastante bem as camadas \checkmark externas do Sol.

A relação de temperatura derivada da equação politrópica é dada por

$T_{eff} = 2600\mu^{13/5}$

Os expoentes estranhos refletem a dificuldade e a imprecisão dos cálculos para esses casos.

Estrelas totalmente convectivas

34

$${}^{51}\left[\frac{M}{M_{\odot}}\right]^{7/51}\left[\frac{L}{L_{\odot}}\right]^{1/102}K$$

C. A. Wuensche (2022)

- Essa relação define o locus de temperatura dada massa).
- A temperatura efetiva de estrelas completamente convectivas em equilíbrio

Estrelas totalmente convectivas

constante para diversas luminosidades (para uma

hidrostático são essencialmente independentes do mecanismo inicial de geração de energia.

Resultados de modelos

Leitura (recomendadíssima): "Principles of Stellar (Eq. de Lane-Emden) e 6 (Modelagem estelar)

Evolution and Nucleossynthesis" (D. D. Clayton), caps. 2

 $\log T_e$

 $\log (\rho_c/\bar{\rho})$

 $\log R$

log L

15.5

Variação em função do tempo das grandezas secundárias durante a contração de uma estrela de uma massa solar para a sequência principal.

Intervalos: \checkmark

 \checkmark

- 3,58 < log T < 3,78 \checkmark
- ✓ $-0.4 < \log (L/L_{sol}) < 0.6$
- ✓ $-0.4 < \log (R/R_{sol}) < 0.6$
- $0 < log(\rho_c/\rho) < 2,0$ \checkmark

 \checkmark 0 < Q_{rc} 1

C. A. Wuensche (2022)

- Trajetórias da contração pré-SP para modelos \checkmark com massas 0,5; 1; 1,25; 1,5; 2,25; 3; 5; 9 e 15 M_{sol}.
- Os tempos necessários para as estrelas \checkmark atingirem os pontos numerados ao longo de suas trajetórias encontram-se na tabela a seguir.

Table 6-1 Evolutionary lifetimes, years

Point	15.0	9.0	5.0	3.0	2.25	1.5	1.25	1.0	0.5
1	6.740×10^{2}	1.443×10^{3}	$2.936 imes 10^4$	$3.420 imes10^4$	$7.862 imes10^4$	$2.347 imes 10^{s}$	$4.508 imes10^5$	$1.189 imes 10^{s}$	$3.195 imes10^{ m s}$
2	3.766×10^{3}	1.473×10^{4}	1.069×10^{5}	$2.078 imes10^{5}$	$5.940 imes10^{s}$	$2.363 imes10^{ m c}$	$3.957 imes 10^{\circ}$	$1.058 imes 10^4$	1.786×10^{6}
3	9.350×10^{3}	3.645×10^{4}	2.001×10^{6}	$7.633 imes 10^{\circ}$	$1.883 imes 10^{\circ}$	$5.801 imes 10^{6}$	$8.800 imes 10^{\circ}$	8.910 X 10⁴	8.711×10^{6}
4	2.203×10^{4}	6.987×10^{4}	$2.860 imes 10^{5}$	$1.135 imes 10^{\circ}$	$2.505 imes 10^6$	$7.584 imes 10^{\circ}$	$1.155 imes 10^{7}$	1.821×10^{7}	$3.092 imes 10^{7}$
5	2.657×10^{4}	7.922×10^{4}	3.137×10^{6}	$1.250 imes10^{\circ}$	$2.818 imes10^{6}$	$8.620 imes 10^{\circ}$	$1.404 imes 10^{7}$	$2.529 imes 10^7$	1.550×10^{8}
6	3.984×10^{4}	1.019×10^{5}	$3.880 imes10^{5}$	$1.465 imes 10^4$	$3.319 imes 10^6$	1.043×10^{7}	$1.755 imes 10^7$	$3.418 imes 10^{7}$	
7	4.585×10^{4}	1.195×10^{5}	$4.559 imes 10^{s}$	1.741 X 10⁵	$3.993 imes 10^{6}$	$1.339 imes 10^7$	2.796×10^{7}	5.016×10^{7}	
8	6.170×10^{4}	$1.505 imes 10^{5}$	5.759×10^{5}	$2.514 imes10^{s}$	$5.855 imes10^{6}$	1.821×10^{7}	$2.954 imes10^7$		

† I. Iben, Jr., Astrophys. J., 141:993 (1965). By permission of The University of Chicago Press. Copyright 1965 by The University of Chicago.

N/N⊙

- Estrelas de pop I, com massas \checkmark 1; 1,5; 3; 5; 9 e 15 M_{sol}. O ponto de partida é a SPIZ
- A idade das estrelas nos \checkmark pontos numerados está na tabela a seguir.

.

0.0

<u>ः ज</u>्य 20

C. A. Wuensche (2022)

Evolutionary lifetimes, years† Table 6-8

-					· -	•
Point	15.0	9.0	5.0	3.0	1.5	1.0
1	$6.160 imes10^4$	$1.511 imes10^{5}$	$5.760 imes10^{5}$	$2.510 imes10^{6}$	$1.821 imes 10^7$	5.016×10^{7}
2	$1.023 imes10^7$	$2.129 imes10^7$	$6.549 imes10^7$	$2.273 imes10^{8}$	$1.567 imes10^{9}$	8.060×10^{9}
3	$1.048 imes10^7$	$2.190 imes10^7$	$6.823 imes10^7$	$2.394 imes10^{8}$	$1.652 imes10^{ m 9}$	9.705×10^{9}
4	$1.050 imes10^7$	$2.208 imes10^7$	$7.019 imes10^7$	$2.478 imes10^{8}$	$2.036 imes10^{9}$	$1.0236 imes10^{10}$
5	$1.149 imes 10^7$	$2.213 imes10^7$	$7.035 imes 10^7$	$2.488 imes10^{ m s}$	$2.105 imes10^{9}$	$1.0446 imes 10^{10}$
6	$1.196 imes 10^7$	$2.214 imes10^7$	$7.084 imes10^7$	$2.531 imes10^{8}$	$2.263 imes10^{9}$	$1.0875 imes10^{10}$
7	$1.210 imes10^7$	$2.273 imes10^7$	$7.844 imes10^7$	$2.887 imes 10^{s}$		
8	$1.213 imes10^7$	$2.315 imes10^7$	$8.524 imes10^7$	$3.095 imes10^{8}$		
9	$1.214 imes10^7$	$2.574 imes10^7$	$8.782 imes10^7$	$3.262 imes10^{8}$		
10		$2.623 imes10^7$	•			

† I. Iben, Jr., Astrophys. J., 140:1631 (1964). By permission of The University of Chicago Press. Copyright 1964 by The University of Chicago.

m/m⊙

C. A. Wuensche (2022)

- Trajetórias evolutivas de estrelas de \checkmark baixa massa (pop I) com massas 1; $1,25 e 1,5 M_{sol}$.
- As idades nos pontos numerados \checkmark encontram-se na tabela a seguir.
- Os círculos numerados representam \checkmark os fatores de depleção da abundância superficial de Li⁷ causada pelo aprofundamento da camada convectiva externa.

Tempos evolutivos (10⁹ anos)

Table 6.9	Evolutionary	lifetimes (10 ⁹ years)†
Point	1.0∭⊙	$1.25 \mathrm{M}_{\odot}$
1	0.05060	0.02954
2	3.8209	1.4220
3	6.7100	2.8320
4	8.1719	3.0144
5	9.2012	3.5524
6	9.9030	3.9213
7	10.195	4.0597
8		4.1204
9		4.1593
10	10.352	4.2060
11	10.565	4.3427
12	10.750	4.4505
13	10.875	4.5349

† I. Iben, Jr., Astrophys. J., 147:624 (1967). sion of The University of Chicago Press. Copyright 1967 by The University of Chicago.

- 1.50m_☉
- 0.01821
- 1.0277
- 1.5710
- 1.6520
- 1.8261
- 1.9666
- 2.0010
- 2.0397
- 2.0676
- 2.1059
- 2.1991
- 2.2628

By permis-

C. A. Wuensche (2022)

FIM DA PARTE DE MODELAGEM

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA, INOVAÇÕES E COMUNICAÇÕES INSTITUTO NACIONAL DE PESQUISAS ESPACIAIS

Credit: NASA, ESA, P. Oesch (University of Geneva), and M. Montes (University of New South Wales)

Formação estelar

Leitura recomendada

R. Kippenhanhn, A. Weigert, A. Weiss. Stellar Structure and Evolution (2nd ed.). Springer (2012)

✓ Caps. 22, 24, 26, 27, 28 and 29

Premissas básicas

- Estrelas são formadas a partir da matéria no meio interestelar
- O mecanismo mais provável é a instabilidade gravitacional
- Image: Second importantes no colapso
- Image: Image: Image: Image: The second second

Condições de estabilidade

the energy generated must be radiated away, if the energy production is increased, the temperature goes up, therefore the pressure goes up and the star expands - the surface area increases and more energy is radiated to space to balance the increased production

Formação de aglomerados estelares

- Estrelas nascem de grandes nuvens moleculares. \checkmark
- Aglomerados são formados e mantidos por efeitos gravitacionais. \checkmark
- Após o sistema tornar-se gravitacionalmente ligado, seus componentes orbitarão uns \checkmark em torno dos outros para sempre.

Caixinha de jóias (aglomerado aberto)

C. A. Wuensche (2022)

Aglomerados estelares

Globular Cluster NGC 6093

M80 (aglomerado globular)

 \square Se uma protoestrela tem menos de 0,08 M_{sol}, não ocorre o início da fusão nuclear => anã marrom ✓ tamanho aproximado de planetas gigantes Emissão de energia por colapso gravitacional.

Anãs marrons - fracassos estelares

Fonte: Hubblesite.org

um dos tipos mais comuns de estrelas Anãs marrons esfriam e viram "anãs negras".

U

R

X

Evidência de formação estelar

- A região em torno da nebulosa M20 mostra evidências de contração
- Uma nuvem molecular gigante escura rodeia a nebulosa visível
- Densidade e temperatura são muito baixas
- A região brilhante de gás ionizado resulta diretamente de uma estrela massiva tipo O

Evidência de Protoestrelas

PRC95-44b · ST Scl OPO · November 2, 1995 J. Hester and P. Scowen (AZ State Univ.), NASA →Regiões de formação conhecidas como EGGs aparecem no topo deste pilar gigantesco de gás e poeira na Nebulosa da Águia (M16)

→EGGs (Evaporating Gaseous Globules) são regiões densas de hidrogênio molecular que se fragmentam e eventualmente colapsam para formar estrelas.

Ondas de choque e formação estelar

Onde a formação estelar ocorre?

Fonte: https://www.astropt.org/2010/08/29/local-fluff/

Fonte: Diffuse Matter in the Universe (Dopita & Sutherland, 2001) C. A. Wuensche (2022)

Fig. 1.2. Densities and characteristic sizes of diffuse astrophysical plasmas in the universe. For each class of objects, the characteristic size in log(cm) is given.

The approximate boundary between plasmas in LTE and non-LTE plasmas is marked as a dash-dot line.

Current nebular modelling is valid within the approximate boundaries of the box-shaped region.

The thin solid curve connects the dominant phases of galactic and intergalactic diffuse media.

O critério de Jeans

- Determinação da massa cujo valor determina a estabilidade de uma esfera gasosa autogravitante
- Consideração inicial: meio homogêneo e infinito.
 - Problema: o potencial gravitacional deve ser constante, o que exige ρ \checkmark = 0....
 - Perturbamos periodicamente o meio com pequenos λ \checkmark

Eqs. de movimento hidrodinâmico:

 $\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} = -\frac{1}{\rho} \nabla P - \nabla \Phi$ $\frac{\partial \rho}{\partial t} + \vec{v}\nabla\rho + \rho\nabla.\vec{v} = 0$

 $\nabla^2 \Phi = 4\pi G\rho$ $P = \frac{\rho \kappa T}{\mu m_H} = v_s^2 \rho$

Na condição de equilíbrio, supomos que:

$$\rho = \rho_0 = const.; \quad T = T_0 = const.; \quad \vec{v}_0 = 0.$$

- Perturbamos a condição de equilíbrio usando as relações abaixo, em que o subscrito 1 indica a quantidade perturbada.
- Ao substituir as grandezas perturbadas nas eqs. hidrodinâmicas, supomos perturbações isotérmicas e ignoramos termos não-lineares ou de segunda ordem (produto de duas grandezas perturbadas).

$$\rho = \rho_0 + \rho_1$$
$$P = P_0 + P_1$$
$$\Phi = \Phi_0 + \Phi_1$$

- v =

$$= \vec{v}_1$$

✓ que é um sistema de ED lineares homogêneas com coeficientes constantes, e que admite soluções do tipo

 $f(\vec{r},t)$ o

$$-\nabla(\Phi_1 + v_s^2 \frac{\rho_1}{\rho_0})$$
$$= \pi G \rho_1$$

$$\times e^{-i(\vec{\kappa}.\vec{r}+\omega t)}$$

 $\frac{\partial}{\partial x} = i\kappa; \frac{\partial}{\partial t} =$

 $v_{1x} =$

 4τ

$$= i\omega; \frac{\partial}{\partial y} = \frac{\partial}{\partial z} = 0$$
$$= v_1; v1y = v_{1z} = 0$$

$$\frac{2}{2}\rho_1 + \kappa \Phi_1 = 0$$

$$v_0 v_1 + \omega \rho_1 = 0$$

$$\tau G \rho_1 + \kappa^2 = 0$$

Solução do sistema é a relação de dispersão: $\omega^2 = \kappa^2$

Duas soluções possíveis: $\checkmark \kappa v_{\rm s}^2 \gg 4G\rho_0$

ondas de pequenas amplitudes geram pequenos efeitos gravitacionais; pressão interna rapidamente restaura qualquer perturbação

$$\checkmark \kappa v_s^2 < 4\pi G \rho_0$$

solução instável e pode crescer exponencialmente com o tempo, criando um desequilíbrio ($\propto \exp(\pm i\omega t)$)

$$^2v_s^2 - 4\pi G\rho_0$$

$$\omega^2 = \kappa^2 v_s^2$$

Definimos um número de onda (e, consequentemente, um comprimento de onda) característico tal que seja possível separar as perturbações em instáveis e estáveis:

- \square Condição de instabilidade: $\lambda > \lambda_I$ Critério de Jeans: $\lambda_I^2 =$
- λ_I , a pressão interna do meio restabelece o equilíbrio de forças, restituindo o sistema à condição de repouso.

$$\kappa_J^2 \equiv \frac{4\pi G\rho_0}{v_s^2} \to \lambda_J = \frac{2\pi}{\kappa_J}$$

$$(\frac{\pi}{G\rho_0})^{1/2}v_s^2$$

Caso valha a cond. de instabilidade, a solução das eqs. hidrodinâmicas é instável, dando início ao colapso. Para comprimentos de onda menores que

- Os pontos essenciais para entender o colapso esférico podem ser apreciados através da análise do teorema do Virial.
- Consideramos o caso mais realista de uma esfera de gás ideal, de massa M, raio R finito e embebida em um meio $\operatorname{com} P^* > 0.$
- A estrutura da esfera pode ser obtida através de uma das soluções da eq. de Lane—Emden para um polítropo isotérmico.

Instabilidade no caso esférico

- Os pontos essenciais para entender o colapso esférico podem ser apreciados através da análise do teorema do Virial.
- Consideramos o caso mais realista de uma esfera de gás ideal, de massa M, raio R finito e embebida em um meio $\operatorname{com} P^* > 0.$
- A estrutura da esfera pode ser obtida através de uma das soluções da eq. de Lane—Emden para um polítropo isotérmico.

Instabilidade no caso esférico

Rever cap. 3 do KWW...

Consideramos a esfera de gás isotérmica (pol. de Lane-Emden), com energias interna e gravitacional dadas por:

 $E_i = c_i, MT$

I Para um gás monoatômico, o teorema do Virial pode ser escrito da forma:

$$\zeta E_i + E_g = 4\pi R^3 P_0$$

 \square Em que P₀ representa a pressão externa. $\checkmark P_0 > 0 => contração$ $\checkmark P_0 < 0 \Rightarrow expansão$

Colapso de Jeans – caso esférico

$$T; \quad E_g = \frac{\theta G M^2}{R}$$

$$\rightarrow P_0 = \frac{c_v MT}{2\pi R^3} - \frac{\theta G M^2}{4\pi R^4}$$

Consideramos a esfera de gás isotérmica (pol. de Lane-Emden), com energias interna e gravitacional dadas por:

$$\zeta E_i + E_g = 4\pi R^3 P_0$$

 \square Em que P₀ representa a pressão externa. $\checkmark P_0 > 0 => contração$ \checkmark P₀ < 0 => expansão

Colapso de Jeans – caso esférico

 θ = 3 (5 - n), da ordem de 1, usado para ajustar a distribuição real de gases dentro da estrela.

23

O valor máximo de P(=P_{crit}) que impede o colapso é dado por dP/dR = 0 (c_v =3/2 ($\kappa/\mu m_H$)): \checkmark

$$R = R_{crit} = \frac{4\theta}{9} \frac{G\mu m_H M}{\kappa T} = \left[\frac{27}{16\pi\theta} \frac{\kappa T}{G\mu m_H \bar{\rho}}\right]^{1/2}$$

É interessante notar que esse valor é da ordem de λ_{J} ! \checkmark $\lambda_J = [-$

 \checkmark podemos derivar a massa de Jeans:

$$M_J = \frac{4\pi}{3}\bar{\rho}R^3 = \frac{27}{16}\left(\frac{3}{\pi}\right)^{1/2}\left(\frac{\kappa T}{\theta\mu m_H G}\right)^{3/2}\left(\frac{1}{\bar{\rho}}\right)^{1/2}$$
$$M_J = 1, 1M_{\odot}\left(\frac{T}{10\ K}\right)^{3/2}\left(\frac{\rho}{10^{-19}\ g.cm^{-3}}\right)^{-1/2}$$

Colapso de Jeans -

$$\frac{\pi\kappa T}{G\mu m_H\bar{\rho}}]^{1/2}$$

De R e de considerações de estabilidade para o colapso sob a ação da pressão externa,

- As condições de parametrização anteriores (densidade e temperatura) são típicas de nuvens moleculares onde ocorrem colapsos que levam à formação estelar
- Intretanto, simulações sugerem que, ao se condensar, a nuvem que sofre o colapso se fragmenta em unidades menores, de forma a produzir diversas protoestrelas a partir de um único colapso
- Fator causador das instabilidades: turbulência!
- ✓ Os fatores numéricos nas eqs. (26) e (27) refletem as diferentes condições de composição química na nuvem.
- \square Escalas de tempo relevantes: queda-livre (t ~ 10⁵ anos) e ajuste térmico (t ~ 10 anos) => colapso essencialmente ISOTÉRMICO!

Fragmentação

- ☑ Nuvens moleculares com massas da ordem de 10⁴⁻⁵ M_{sol} sofrem ajustes internos devido a processos intensos de turbulência
- As mesmas ondas de choque que depositam energia no gás da nuvem para evitar o colapso dela como um todo produzem caroços e filamentos que, ao exceder o valor de M_J, sofrem colapso.
- Processo observado em simulações e através de observação no IV: fragmentação => produção de protoestrelas de massa M << M_{nuvem}

- radiativos durante o colapso definem a massa final dos fragmentos.
- Em termos gerais, a energia irradiada pela nuvem colapsante é da ordem da energia gravitacional da nuvem

$$E/t \sim GM^2 /$$

por

Embora o processo seja bastante complexo, pode-se mostrar que os mecanismos

R , sendo t ~ (Gp)
$$^{-1/2}$$
 29

 $E \sim (3/4\pi)^{1/2} G^{3/2}M^{5/2} / R^{5/2}$

Mas o objeto não pode irradiar mais do que um corpo negro à temperatura do colapso (praticamente isotérmico, como vimos), logo o fluxo radiativo para compensar o aquecimento da nuvem SEM INTERROMPER O COLAPSO é dado

$B = 4\pi f \sigma T^4 R^2$

- O colapso isotérmico ocorre quando B >> E/t. Quando temos B ~ E/t, o processo torna-se adiabático. Esse é o caso em que $M^5 = 64\pi^3/3 (f\sigma)^2 T^8 R^9 / G^3$ 31
- \square O limite do colapso ocorre quando a massa M = M_J.
- \square Usando o valor de R_J para isolar M_J e eliminando ρ , obtemos, a partir do valor de M_{J} para um colapso esférico:

$$M_{\rm J}$$
 = 0,003 $M_{\rm Sol}$ T^{1/4}

If é um fator < 1, que justifica o fato de que o fluxo radiativo da nuvem pode</p> ser aproximado por uma emissão semelhante a um corpo negro, mas menor do que ele.

Fragmentação

/ $f^{1/2}$ (considerando $\mu = 1$). 32

71

- \checkmark
- ordem da massa solar!!!
- ser resfriadores extremamente eficientes, devido à grande disponíveis para os e-.

Fragmentação

Fisicamente, o valor da massa de Jeans varia ao longo do colapso, até que a opacidade (causada pelo aumento da densidade) é suficiente para impedir o fluxo radiativo que mantém o colapso!

Descobrimos que os colapsos terminam quando as massas são da

✓ Importante notar que esse resultado é fortemente dependente da composição química, uma vez que elementos mais pesados podem possibilidade de dissipar energia nos muitos níveis espectrais

- possuem um processo de resfriamento ineficiente.
- formação das primeiras estrelas é da ordem de 100 M_{Sol} .
- - momento angular, facilitando o colapso.

Estrelas de pop. III, cuja composição é essencialmente H e H,

As menores condensações em uma nuvem colapsante na época da

Alguns fatores complicadores não são considerados nessa análise: Campos magnéticos – dissipadores de energia, via transferência de

Estágio para entrar na Sequencia Principal de Idade Zero (SPIZ):

- 2000 K \rightarrow dissociação do H².
- ✓ Absorção de energia → γ_{ad} cresce → eq. hidrostático instável novamente → NOVO COLAPSO!
- ✓ Formação de um segundo caroço, mais interno, estável.
- Valores típicos para o caroço:
 - \checkmark R ~ 1,3 R_{sol}
 - \checkmark M ~ 1,5×10⁻³ M_{sol}
 - ✓ ρ_{cen} ~ 1,2 x 10⁻² g.cm⁻³
 - \checkmark T_{cen} ~ 2x104 K

✓ A acresção contínua no caroço → temperature varia de ~ 100 K para mais de

☑ Etapas para entrar na SPIZ:

- 1) col. isotérmico: $t_{ff} \ll t_{KH}$
- 2) col. adiabático: $t_{acr} \ll t_{KH}$
- Ignição: qdo $t_{acr} > t_{KH} e o caroço$ se ajusta termicamente → não há mais evolução adiabática.

A formação protoestelar

- Transição do regime linear para o não-linear. \checkmark
- Após o início do processo, o colapso gravitacional varia com 1/r², enquanto a pressão \checkmark restauradora varia com 1/r.
- Solução inicial do colapso via eq. de movimento para uma esfera colapsando em \checkmark queda livre (desprezando P).
- Colapso homólogo: r/r₀ e (1/r₀)dr/dt são os mesmos para todas as camadas num \checkmark dado instante t.
- Tempo de colapso (queda livre) é

$$t_{\rm ff} = (3\pi/32G\rho_0)^{1/2}$$

- ✓ Para $\rho_0 = 4x10^{-23}$ g.cm⁻³ (material interestelar), $t_{\rm ff} \sim 10^7$ anos
- ✓ Para $\rho_0 = 4x10^{-19}$ g.cm⁻³ (caroço protoestelar), t_{ff} ~ 10⁵ anos

- Interrupção: à medida que o colapso evolui, a pressão "aparece" (gás torna-se opaco) e a temperatura cresce.
- Aproximação de queda livre é abandonada, quando a pressão passa a contrabalançar o processo de colapso
- A interrupção do colapso ocorre de dentro para fora da protoestrela (densidade maior no centro => maior opacidade)
- ✓ Cenário usual:
 - ✓ Caroço central em equilíbrio hidrostático
 - ✓ Envelope ainda em queda livre!!
- Nesse caso, o fluxo de material caindo radialmente no caroço é dado por $dM/dt = 4\pi r^2 \rho v$

Protoestrelas compactas

$$L_{acr} = \frac{1}{2} v_{ff}^2(r) \dot{M} = \frac{1}{4} \frac{GM}{r} \dot{M}$$
⁴¹

de queda livre:

$$v_{ff}(r)$$
 =

 \square Como consideramos M constante para v_{ff}, a solução acima só vale para

$$t_{acr} =$$

C. A. Wuensche (2022)

Formação protoestelar

 \square E_{cin} => E_{ter} . Parte aquece o núcleo, parte é irradiada. Se ignoramos a parte que é usada para aquecer o núcleo, a perda por radiação é dada por:

A velocidade da matéria caindo, da nuvem externa, sobre o núcleo é a vel.

$$=\frac{1}{2}\left(\frac{GM}{r}\right)^{1/2}$$

$$\frac{M}{\dot{M}} >> t_{ff}$$

77

protoestelar

Fig. 27.1 The density ρ (in g cm⁻³) against the distance from the centre r (in cm) in a collapsing cloud. The density distribution is shown by solid lines for different times (labels in 10¹³ s after the onset of the collapse). Regions with homologous changes remain homogeneous $(\partial \rho / \partial r = 0)$; regions in free fall approach a distribution with $\rho \sim r^{-2}$ (i.e. a slope indicated by the dashed line) (After Larson 1969)

78

- Evolução de uma nuvem homogênea de uma massa solar
- ✓ Composição química: X = 0,651, Y = 0,324 e Z = 0,025.
- Eqs. de continuidade, movimento, geração de energia e luminosidade. Vários elementos causadores de opacidade (grãos de poeira, moléculas)

protoestelar

C. A. Wuensche (2022)

lg v

- Fluxo de massa protoestelar o diagrama representa um fator não levado em conta nos cálculos anteriores: a transferência de momento angular
- O fato de que campos magnéticos definem uma direção de movimentação da matéria não neutra e a necessidade de transferir energia de dentro para fora levam à criação de um disco de acresção em torno na protoestrela
- O resíduo desse disco provavelmente é o responsável pela formação de sistemas planetários

M16 (Nebulosa da Águia)

<u>TW Hydrae</u>, região próxima ao Sistema Solar (cerca de 175 anosluz), com uma estrela "recém-nascida (cerca de 10 milhões de anos)

https://www.almaobservatory.org/en/press-<u>releases/almas-best-image-of-a-protoplanetary-</u> <u>disk/</u>

A diferença entre os objetos...

Planets & Exoplanets

Up to ~13x Jupiter's mass

Fonte: https://www.jpl.nasa.gov/news/an-accidental-discovery-hints-at-a-hidden-population-of-cosmic-objects

Brown Dwarfs

Stars (Fueled by Nuclear Fusion)

~13x to 80x Jupiter's mass

Over~80x Jupiter's mass

- Locus no diagrama HR das estrelas totalmente convectivas, \checkmark para um dado conjunto de massas e composição química Transporte de energia do núcleo até a fotosfera é
- \checkmark convectivo. Caso "limite"!
- mistura)

A linha de Hayashi

Delimita a região permitida (à esquerda) no diagrama HR para todas as estrelas com esses parâmetros, desde que elas estejam em equilibrio hidrostático e com o processo convectivo ajustado (definido pela teoria do comprimento de

- Descrição simplificada => solução analítica (polítropo) Suposição básica $\frac{d(lnT)}{d(lnP)} =$
- ☑ Introduz erros na estratificação P-T... Relação P – T para o interior é dada por

 \square C = K⁻ⁿ (K/m_H)¹⁺ⁿ (lembram da const. politrópica?) $n = \frac{1}{\nabla_{ad} - 1} = \frac{1}{2}n$

Linha de Hayashi

$$= \nabla_{ad} = 0, 4$$

33

 $P = C T^{1+n}$

34

35

C. A. Wuensche (2022)

87

Solução

aproximada para o interior (n=3/2)

$$logT = 0, 4 \ logP + 0, 4(\frac{3}{2} \ logR + \frac{1}{2} \ logM - logC')$$

$$3e$$

R constante e C' dependente de R e n

A solução aproximadas para a atmosfera é:

$$(a+1) \log P_0 = \log M - 2,5 \log R - b \log T_{eff} + const$$

A combinação das 2 equações acima resulta em

$$logT_{eff} = A \ logL + B \ logM$$

- \Box Cada valor de M e μ definem uma linha no diagrama logP log T, dada por

$$Const \qquad A = \frac{0,75a - 0,25}{b + 5,5a + 1,5} \\ B = \frac{0,5a + 1,5}{b + 5,5a + 1,5}$$

- Análise da eq. para T_{eff} indica que
 - It deve ser bastante inclinada (quase vertical)
 - It deve deslocar-se para a esquerda do diagrama HR para massas maiores
 - Aproximações principais para a dedução da LH
- ✓ LH deve localizar-se bem à direita do diagrama HR (T_{eff} < 5x10³ K) \checkmark ✓ Desprezar a depressão de √ad nas zonas de ionização e ignorar
 - convecção super-adiabática

M=1 M_{Sol}, Y=0,245, diferentes Z

✓ Fase pré-SP

- ✓ As linhas azuis mostram a evolução para o diagrama HR (vertical trajetórias de Hayashi)
- ✓ As linhas vermelhas são isócronas que interceptam as azuis em diferentes momentos da vida da protoestrela
- \checkmark Estrelas com M > 2 M_{Sol} praticamente não passam pela trajetória vertical!!!!

Para um observador externo, a nuvem em colapso permanece visível somente no IV, enquanto o envelope for opaco à radiação no visível.

M = 1 M_{sol} : acresção termina bem antes da temperatura central para a ignição do H ser atingida.

- $M = 60 M_{sol}$: acresção continua após o início da queima de H (mas ela é visível somente no IV, devido à opacidade da nuvem externa.
- Quando ela "desacopla" da nuvem, parte do H já foi consumido e ela já passou da SPIZ.

Ref.: Kippenhanhn, Weigert, Weiss (2012)

92

Contração pré-SP

- individuais "caso clássico"!
- In a realidade, estrelas se formam em aglomerados, muitas ao mesmo tempo, resultado do la sector do la sec colapso de muitas regiões condensadas dentro de uma nuvem molecular gigante.
- Processo é resultado, além do colapso gravitacional, da interação (bastante complexa) entre campos magnéticos, turbulência e rotação.
- \square Extinção da acresção \rightarrow gradiente de temperatura \rightarrow envelope convectivo \rightarrow processo se estende até o centro.
- Transição de protoestrela para estrela normal em eq. hidrostático, mas ainda não em equilíbrio térmico.
- Descrição adequada desse processo pode ser feita via contração homóloga. Mudanças definidas principalmente pelo comportamento da equação de estado (particularmente aplicada ao centro da estrela).

Os casos estudados até agora abordam nuvens em contração que vão se tornar estrelas

- Sequência evolutiva do Sol, da fase \bullet protoestelar até entrar na SP.
- O interior atinge a temperatura ulletsuficiente para queimar Deutério em $t=10^5$ anos.
- A contração é interrompida perto ulletda SP, quando a temperatura é suficiente para o início da fusão de H.

Fonte: Principles of Stellar Evolution and Nucleosynthesis (D.D. Clayton), cap. 5)

. 28.1 The vector field given by (28.1) in a diagram showing the temperature T (in K) over the density \rho / \mu_e (in g cm3/. The arrows indicate the direction in which the centre of a homologously contracting star would evolve. In the upper-left part the equation of state is that of an ideal gas, and therefore the arrows have a slope of 1/3.

The thin solid line at which the degeneracy parameter $\Psi = 0$ indicates roughly the transition from the ideal gas to degeneracy of the electrons. The critical line along which , alpha= 3/4 is dot-dashed. On this curve the arrows point horizontally while below it the arrows point downwards

8.0

6.0

									_	_				-	_					_	_
27	~ ^ ^	2.2	~ ~		~	2	*	5	*	٨	~	5	~	~	~		~	~	~	1	2
~ ~	~ ~ ~	~ ~	~ ~	~ ~	~	~	~	~	~	1	~	~	~	~	~	~	~	~	^_	~	~
~ ~	~ ^ ^	مرمر	~ ~	~ ~	~	~	~	ھر	~	هر	~	~	~	~	~	~	~	~		~	~
~ ~	~ ~ ~	~ ~	~ ~	~ ~	~	~	~	~	٨	~	-	~	.1.		0	~	~	~	~	~	~
~ ~	~ ~ ^	~ ~	~ ~	~ ^	~	~	~	~	~	~	~	-	Ψ	=	U.	ッ	~	-	~	-	-
~ ~	~ ~ ~	~ ~	~ ~	~ ~	~	~	-	-	-	-	-	~			/	~	-	1	-	~	-
~ ~		~ ~	~ ~		-	-	~	~	1	-	-	-	-	2	~	-	-	-	-	-	-
~ ~	~ ~ ~	~ ~	~ ~		1	1	-	-	-	~	~	1	~		7	-	1	-	-	-	-
				: -:	1	1	-	-	1	1	~	~	<u> </u>	1	~	~	-	-	-	-	
~ ~			~ ~	: :	1	1	1	1	1	1	2	1	7	1	1	-	-	-		-	-
			~ ~	: :	1	1	1	7	7	1	2.	1	1	1	- -	2.	-	-		-	4
3.5		11	11	: :	5	1	5	3	5	Z	-	5	-		2	-	-	-	~	2	~
33		33	5		-	5	5	5	1	5	5	5	Ξ.	2		-	~	2	2	2	2
22		22	-		2	5	5	2	5	5	-		2		~	~	2	2	<u>></u>	2	<u>></u>
22		2.2	2.		-	2	~	2	-	-		2			<u>.</u>	<u>></u>	<u>></u>	<u>,</u>	<u>۶</u>	<u>۲</u>	<u>۶</u>
2.2	~ ~ ~	2.2	2.2	- A	~	2	1	-	-	-	4	-		<u>.</u>	۲.	÷.	<u>۲</u>	÷.	÷.	<u>}</u>	÷.
2.2	~ ~ ~	~ ~	22		~	1	~	-	-+	4	-		<u>, </u>	×.	÷.,	÷.	÷ .	÷.	÷.	÷	÷.
~ ~	~ ~ ~	~ ~	~ ~	* *	1	-	-	-	s,	-	5		<u>۲</u>	÷.	÷ .	÷.	÷ .	÷.	t -	÷ .	÷.
~ ~	~ ~ ~	~ ~	~ ~	· ~	~	~	4	1	·	~	ζ.	Č.	ς.	÷.	: :	:	÷.	÷.	t -	t.	÷.
~ ~	~ ~ ~	~ ~	~ ~	./~	-	-	-2	÷.,	~	ς.	٠	۲.	<u>،</u>	ĩ.,	t :		ť –	÷	î -	î –	÷.
ת ת	~ ~ ~	~ ~	~ /	ه ک	~		4	~	 . 	ς.	٠	۲.	:	:	î (:	ĩ	î.	:	ĩ –	ĩ –
~ ~	~ ^ ^	~ ~	1		-	<u>, 4</u>	~	~	ζ.	۲.	č –	ĩ	ť –	ť -	: :	:	î -	t	i –	i i	ĩ
~ ~	~ ^ ^	~ 1	~ ~	• -•	1	` -+	~	ς.	۰.	:	ĩ	ĩ	τ.	ĩ	i	ĩ	i	i	i	ī	î.
ה ה	~ ~ ~	2/2		* -**	/	~	×.	ζ.	ĩ	ĩ	ĩ	ī.	ĩ	ī	i	ĩ	ī.	ĩ	ī	I.	I.
* *	~ ~ ~	~ ~		- 14	~	5	ς.	۰.	ĩ	ĩ	ĩ	ī	ī	ī.	ī i	ĩ	ĩ	ĩ	ĩ	ĩ	ĩ
~ ~	~ ~ /	~ ~	/	÷ -,	>	Ň	ĩ.	ĩ	ĩ	ĩ	ĩ	ĩ	ĩ	ī	ī	ī	ī.	ĩ	ĩ	ĩ	ī.
~ ~			1-	• •	\$	Ň	ĩ	ĩ	ĩ	ĩ	ī	ĩ.	ĩ	ĩ.	ĩ.	ī.	ī.	ĩ.	ĩ	ĩ	i.
~ ~		イブ	- · ·	~ ~	Ň	ĩ.	ĩ	ĩ	ĩ	ĩ	ĩ.	ĩ.	ĩ	i.	i i	Î.	í.	í.	í.	i.	i –
~ ~	A		~ `	· ·	v.	ĩ	ĩ.	ĩ	ĩ	ĩ	ī.	i i	i	i.	i.	1	1	1	1	1	1
11		, ~ ~	> >	. <u>.</u>	ĩ	ĩ	ĩ.	ĩ	í.	i.	i –	i –	i –	1	ι.	Ĺ .	1	ŧ.	1	1	1
2.		~ ~	× 1		ĩ	ĩ	í.	í.	i i	i -	1	i –	1	1	ι.	1	1	1	1	1	1
~ ~		~ ~	1 1	ĩ	í.	í.	i –	i i	i.	i.	1	1	1	1	1.	1	1	1	1	1	1
	~~~	1 1	11	. i	í.	i.	Ĩ.	1	1	1	1	1	1	1	ι.	1	1	1	1	1	1
- ī	~ ~ ~	4 4	1 1	. İ.,		-		1				1				_				_	
		20					,	0							~	0					
		2.0			4.0							6.0									
					-	-	-	la	Δ.	/11	-										

--->igp/μ_€

![](_page_96_Figure_6.jpeg)

![](_page_96_Picture_7.jpeg)

![](_page_96_Picture_8.jpeg)

![](_page_97_Picture_0.jpeg)

Fig. 28.2 Temperature T (in K) over density %=e(in g cm3/ with the vector field and the lines D 0  $_{9.0}$ and , D 3=4 as in Fig. 28.1. The heavy lines give the "evolutionary tracks" of the centres of three homologously contracting stars of different lg T 8.0 masses.

Mass M1 is so large that the evolution is not 7.0 remarkably influenced by degeneracy, and the centre continuously heats up during contraction.

For massM2.< M1/ degeneracy becomes important^{6.0} in the centre, and consequently a homologous contraction cannot bring the central temperature above a few 107 K (which is not sufficient to start helium burning).

Mass M3.< M2/ while contracting will start to cool off even before the temperature of hydrogen burning is reached

![](_page_97_Figure_7.jpeg)

![](_page_97_Picture_9.jpeg)

![](_page_98_Picture_0.jpeg)

- Locus dos modelos que descrevem estrelas  $\checkmark$ muito jovens, que iniciaram o processo de reações nucleares (fusão de H no núcleo)
  - ✓ Composição química homogênea (em relação) ao raio)
  - Início do ciclo PP (e, para estrelas massivas, do CNO)
  - "Certidão de nascimento" das estrelas idades contadas a partir da entrada na SP
  - ✓ Resultado de modelos de evolução estelar
  - equilíbrio hidrostático (térmico e mecânico)

A Seq. Principal de Idade Zero

![](_page_98_Figure_10.jpeg)

![](_page_98_Figure_11.jpeg)

![](_page_98_Picture_12.jpeg)

![](_page_99_Picture_0.jpeg)

## Valores para a superfície $\square R \sim M^{\xi}$ $0,56 \leq \xi \leq 0,79$

(SP superior) .... (SP inferior)

$$\checkmark$$
 L ~ $M^{\eta}$ 

 $\eta \sim 3,37$ 

- Dispersão maior para MxR (piores medidas)
- Grandes intervalos nos valores de M e L (respectivamente ~ 250 e ~  $10^8$ )

![](_page_99_Figure_8.jpeg)

![](_page_99_Picture_10.jpeg)

![](_page_99_Picture_11.jpeg)

![](_page_100_Figure_0.jpeg)

![](_page_100_Figure_1.jpeg)

A Seq. Principal de Idade Zero

## Soluções para o interior Dependência de m/M!

![](_page_100_Picture_6.jpeg)

![](_page_100_Picture_7.jpeg)

![](_page_101_Picture_0.jpeg)

Valores para o interior

- Dependência de m/M!
- Núcleos degenerados a partir de  $M/M_{sol} < 1,3$
- Ciclo CNO dominando a partir de log(T) > 7.3

![](_page_101_Figure_6.jpeg)

![](_page_101_Picture_8.jpeg)

![](_page_101_Picture_9.jpeg)

![](_page_102_Picture_0.jpeg)

### Regiões convectivas

- Núcleos radiativos, envelopes convectivos (SPI)
- Núcleos convectivos, envelopes radiativos (SPS)

A Seq. Principal de Idade Zero

![](_page_102_Figure_6.jpeg)

![](_page_102_Picture_8.jpeg)

![](_page_102_Picture_9.jpeg)

![](_page_103_Picture_0.jpeg)

## Regiões convectivas

![](_page_103_Figure_4.jpeg)

![](_page_103_Picture_5.jpeg)

A Seq. Principal de Idade Zero

![](_page_103_Picture_8.jpeg)

![](_page_103_Picture_9.jpeg)

![](_page_104_Picture_0.jpeg)

# O Sol: requisitos para um modelo

- Evidências observacionais para um modelo estelar baseado no Sol
  - Idade: ~ 4,6 bilhões de anos (baseado em datação) radiativa)
  - ✓ Estabilidade na SP (queima de  $H \Rightarrow$  luminosidade constante)
  - ✓ Fonte de energia: ciclo pp
  - ✓ Núcleo já enriquecido de He⁴

![](_page_104_Picture_10.jpeg)

![](_page_105_Picture_0.jpeg)

Durante a evolução numérica do modelo, ocorre mudança em  $\mu$ , de modo que  $L/L' = (M/M')^3 (\mu/\mu')^4$  $\square$  Parâmetros livres: Y e  $I_m/H_P$  $\checkmark Y \Rightarrow$  variação da luminosidade  $\langle I_m / H_P \Rightarrow variação do raio (temperatura)$ Zonas de transporte radiativo: ✓ convecção no interior ✓radiação nas camadas mais externas

Requisitos para um modelo

![](_page_105_Picture_6.jpeg)

![](_page_105_Picture_7.jpeg)

![](_page_106_Picture_0.jpeg)

- Testes para o modelo solar: oscilações não-radiais solares.
- Para os neutrinos
  - Reações geradoras de v:  $\checkmark$
  - ciclo pp (principal), CNO
  - $\checkmark H^1 + H^1 + e^- \Longrightarrow H^2 + v$
  - Qual é o espectro esperado?

**Requisitos para** um modelo

# (helio sismologia) e experimentos para medir neutrinos

![](_page_106_Picture_12.jpeg)

![](_page_106_Picture_13.jpeg)

![](_page_107_Picture_0.jpeg)

Table 29.1 Solar quan	titles and now they are derived						
Quantity	Value	Method					
Mass	$(1.9891 \pm 0.0004) \times 10^{33} \mathrm{g}$	Kepler's third law					
Radius	$695,508 \pm 26 \mathrm{km}$	Angular diameter plus distance					
Luminosity	$(3.846 \pm 0.01) \times 10^{33} \text{ erg s}^{-1}$	Solar constant					
Effective temp.	$5,779 \pm 2 \text{ K}$	Stefan-Boltzmann law					
Z/X	$0.0245 \pm 0.001$	Meteorites and solar spectrum					
	0.0165	(new determination)					
Age	$4.57 \pm 0.02  \text{Gyr}$	Radioactive decay in meteorites					
Depth of conv. env.	$0.713 \pm 0.001 R_{\odot}$	Helioseismology					
Env. helium content	$0.246 \pm 0.002$	Helioseismology					

(Z/X) is given twice: the more traditional value by Grevesse and Noels (1993) and the more recent one by Asplund et al. (2005)

### Table 20.1 Color quantities and how they are derived.

![](_page_107_Picture_6.jpeg)


C. A. Wuensche (2022)

FIM DA AULA 2

