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ABSTRACT

One of the most popular coherent radio emission mechanisms is electron cyclotron maser instability. In
this article we demonstrate that electron cyclotron maser emission is directly associated with particular types
of charged particle acceleration such as turbulence and shocks commonly inferred in astrophysical plasmas.

Subject headings:masers — radiation mechanisms: nonthermal

1. INTRODUCTION

We present a model of coherent emission directly
connected to the process of particle acceleration to high
energies owing to collisionless shock waves, including the
full relativistic effects. We consider acceleration by either
plasma wave turbulence or quasi-perpendicular shocks. The
particular plasma waves we consider propagate mainly per-
pendicular to the magnetic field, which can accelerate
electrons by the surfatron process (Katsouleas & Dawson
1983). Both surfatron and shock acceleration provide us
with velocity-space ring-type distribution functions, which
we demonstrate are ideal for generating cyclotron maser
radiation. A coherent emission mechanism would explain
the high brightness measurements without having to rely on
special geometrical effects. The model we propose is directly
linked to the injection and acceleration of particles at shocks
and does not need a second-stage process since it cannot be
separated from the acceleration process. The radiation is a
result of the relaxation process whenever an anisotropic
distribution is formed.

The role of coherent emission mechanisms in explaining
planetary solar and stellar observations is firmly estab-
lished; for example, the emission from planetary magneto-
spheres is considered to be electron cyclotron maser
radiation. It was first introduced by Twiss (1958) to explain
radio astronomical sources. The electron cyclotron maser
(Sprangle & Drobot 1977) is a collective electromagnetic
emission producing intense extraordinary mode radiation
close to the electron cyclotron frequency �e, with small
bandwidth.

The electron cyclotron maser instability is a powerful
mechanism for producing nonthermal stimulated radiation
in a plasma. The free energy source for the electron cyclo-
tron instability giving rise to stimulated emission of
radiation is an anisotropic electron distribution function
such that @fe=@v? > 0, which constitutes a population
inversion. The loss-cone distribution function with
@fe=@v? > 0 is commonly considered as the free energy
source (Wu & Lee 1979). However, in many situations

where intense radio emission is observed, energetic particle
beams are also observed or invoked. Electron beams
propagating in a varying magnetic field give rise to a charac-
teristically shaped horseshoe distribution as a result of the
first adiabatic invariant. Horseshoe distributions also have
@fe=@v? > 0, a necessary structure for generating radiation
(Bingham & Cairns 2000). The horseshoe distribution is
extremely efficient (Bingham & Cairns 2000) in generating
cyclotron maser radiation; these previous treatments only
considered weakly relativistic particles. The electron cyclo-
tron maser produces stimulated emission with a narrow
bandwidth polarized in the R-X mode and occurs in regions
where the cold background plasma component is depleted
in comparison to the hot component. The maser instability
has maximum growth for low background plasma density,
such that the beam density is greater than the ambient den-
sity. This is supported by satellite measurements of depleted
density regions known as the auroral cavity, where a horse-
shoe electron distribution function is also observed (Ergun
et al. 2000). Another type of electron distribution function
invoked to explain nonthermal radiation from space and
astrophysical objects is a ring-type distribution in perpen-
dicular velocity space. The ring distribution is similar to
those used in laboratory gyrotron devices where intense
maser radiation is generated from relativistic electrons
(Sprangle & Drobot 1977). In astrophysics, ring-type
distributions can also be found, for example, at quasi-
perpendicular shocks (Tokar et al. 1986).

The instability giving rise to electron cyclotron maser
action in plasmas is driven by anisotropic velocity space dis-
tribution functions. Processes which are responsible for
creating these anisotropic velocity space distributions are
directly associated with particle acceleration mechanisms;
therefore, any discussion of maser radiation mechanisms
must consider acceleration processes. In particular, we con-
sider acceleration processes which may occur in jets and give
rise to particular anisotropic velocity space distributions
suitable for driving the electron cyclotron maser emission.
Plasma wave turbulence and shocks commonly inferred in
astrophysics can provide the necessary free energy in the
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form of anisotropic velocity space distributions to drive the
maser emission mechanism.

1.1. Electron Acceleration

Models of electron acceleration in jets include accelera-
tion by magnetohydrodynamic plasma wave turbulence or
by shocks. Both processes are capable of producing highly
relativistic particles with a power-law tail from a slightly rel-
ativistic seed population. However, for these processes to be
effective in accelerating electrons, there must be waves that
are in cyclotron resonance with the particles. In low-density
plasmas likely to exist in jets, the electrons must be mildly
relativistic before significant acceleration takes place by
Alfvén wave resonance. This is the so-called injection prob-
lem, where electrons from a low-temperature thermal
population are accelerated to subrelativistic velocities where
Alfvén wave resonance is effective. Recent studies of elec-
tron acceleration by the surfatron acceleration mechanism
(Katsouleas & Dawson 1983) demonstrate the effectiveness
of this acceleration process in fulfilling the role of preinjec-
tor (McClements et al. 1993). There is no limit to the energy
gained from this process. In practice, however, it is limited
by the transverse dimensions of the plasma turbulence
region or shock. The surfatron accelerator scheme was
introduced by Katsouleas & Dawson (1983) to overcome
the limit set by dephasing in relativistic plasma wave
accelerators.

Surfatron acceleration is a wave particle acceleration
scheme where waves such as Bernstein waves, lower hybrid,
magnetosonic, and upper hybrid waves, which all propagate
with a component of their electric field perpendicular to the
ambient magnetic field, have a common damping mecha-
nism resulting in energization of particles perpendicular to
the magnetic field. These waves can easily be driven by ion
beams propagating perpendicularly to the magnetic field.
The energization mechanism can be of a stochastic or non-
stochastic nature. Karney (1979) described stochastic
heating of ions by lower hybrid waves as a random interac-
tion of waves and particles with a resonant point in the
particles’ cyclotron orbit, where the particles receive kicks
allowing them to increase in phase space. At a particular
amplitude known as the stochastic threshold, significant
heating is possible given by E=vphB

� �
¼ 1=4ð Þ !=�eð Þ1=3

(Karney 1979), where E is the wave field amplitude, ! is the
wave frequency, vph is the phase velocity, and !e0 is the
cyclotron frequency ¼ eB=með Þ. For wave amplitudes below
this threshold amplitude we have the linear nonstochastic
regime, for 1=4ð Þ !=�eð Þ1=3< E=vphB < 1 we are in the
stochastic regime, and for E=vphB > 1 we are in the nonsto-
chastic nonlinear regime. Most attention has concerned the
stochastic regime resulting in plasma heating. The nonsto-
chastic regime has been concerned with particle acceleration
for both nonrelativistic and relativistic particles. The essen-
tial elements of surfatron acceleration in the relativistic
nonstochastic regime were derived by Katsouleas &
Dawson (1983), although it had been used for both relativis-
tic and nonrelativistic particle acceleration (Cairns 1971;
Sagdeev & Shapiro 1973; Lembege & Dawson 1989; Lee,
Shapiro, & Sagdeev 1996; Bingham et al. 2000). It was
used to explain electron energization to overcome the main
weakness of diffusive shock acceleration by providing an
acceleration mechanism for low-energy particles known as

the injection problem (McClements et al. 1997; Lee et al.
1996).

A test particle description of the surfatron acceleration
model can easily be described using relativistic equations for
the particle. Consider a magnetic field in the z-direction and
a wave with a longitudinal electric field moving in the
y-direction; then the equations of motion for an electron are

dpx
dt

¼ �eBpy
m0�

; ð1Þ

dpy
dt

¼ eBpx
m0�

� eE sin ky� !tð Þ ; ð2Þ

dy

dt
¼ py

�m0
; ð3Þ

where m0 is the electron rest mass and pi is the particles
momentum ¼ �m0við Þ. If �e0 is the nonrelativistic cyclotron
frequency (calculated with the rest mass ¼ eB=m0), we can
normalize time in terms of 1=�e0, length in units of c=�e0,
and momentum in units of m0c. We also transform the y
coordinate such that y ! y� !=kð Þt, where !=k is the wave
phase speed. Then we obtain the dimensionless equations of
motion

dpx
dt

¼ � py
�

; ð4Þ

dpy
dt

¼ px
�
� � sin kyð Þ ; ð5Þ

dy

dt
¼ py

�
� � ; ð6Þ

where � ¼ !=k the wave phase speed, and � ¼ eE=mc�e0.
Consider a solution to equations (4)–(6) in which there is

steady acceleration of the particle. If dy=dtð Þ ¼ 0, corre-
sponding to no phase change of the particle with respect to
the wave, then from equations (4) and (6) we get
dpx=dtð Þ ¼ ��. If we assume that at the same time
dpy=dt
� �

¼ �, and that we are in the asymptotic regime
where

px � ��t ; ð7Þ

py � �t ; ð8Þ

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2x þ p2y

q
� p2x þ p2y ; ð9Þ

then equation (4) implies that

� ¼ ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p ð10Þ

or

� ¼ �2= 1� �2
� �1=2

: ð11Þ

We are assuming that � < 1; i.e., the wave phase velocity
is less than c. For these relations to be consistent with
equation (5) we also need

� ¼ � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2

p � � sin ky0ð Þ ; ð12Þ

where y0 is the constant value of y. Rearranging equation
(12) gives

�� sin ky0ð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ; ð13Þ
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which has no possible solution unless

� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p : ð14Þ

Condition (14) gives a threshold wave amplitude above
which we may expect to find solutions in which the particle
travels along the wave front continuously gaining energy.
The threshold value is E � �phc�, where �ph ¼ ½1=
1� �2ð Þ1=2�, which is the relativistic trapping threshold; a
trapped particle satisfying E ¼ �phc� can never detrap.

The solutions of equations (4)–(6) are shown in Figure 1
for � ¼ 0:3, for which the critical � is 1.048. The initial run
has � ¼ 1:05, and we show a phase plane diagram for the
momenta in Figure 1. Clearly the results approach an
asymptotic solution of the form described above, with y
tending to a constant value and the momentum and energy
increasing linearly with time. The only constraint on the
energy achieved is the spatial extent of the system. The
results for many particles are close to being ring-type distri-
butions in the perpendicular momentum space ideal for the
generation of radiation by the cyclotron maser radiation
mechanism. These ring distributions can be represented by
the following distribution

fring p?; pk
� �

¼ const:� exp � p? � p0ð Þ2

m2
ev2T?

�
p2k

m2
ev2Tk

" #
; ð15Þ

where p0 is the ring momentum, pk and p ? are the perpen-
dicular and parallel momenta, vT? is the ring thermal speed,
and vTk is the parallel thermal speed. Such ring-type distri-
butions have been observed in particle in cell simulations of
collisionless shocks (Tokar et al. 1986) and magnetosonic
waves (Lembege &Dawson 1989).

At quasi-perpendicular shocks, counterstreaming ion
flows and ring distributions are also formed. These particu-
lar ion distributions are ideal for the generation of lower
hybrid waves by the modified two-stream instability

(Bingham, Dawson, & Shapiro 2003). Lower hybrid waves
are electrostatic waves that are in simultaneous Cerenkov
resonance with ions propagating perpendicular to the mag-
netic field. The result is an energy transfer from ions to
electrons or vice versa. In the modified two-stream instabil-
ity ion beams or rings in velocity space generate lower
hybrid waves that are capable of accelerating electrons par-
allel to the magnetic field to high energies. Numerical
simulation studies (McClements et al. 1993) show that ener-
getic electrons are easily produced, forming a high-energy
tail or beam moving along the magnetic field lines. This
beam will evolve into a horseshoe or crescent-shaped distri-
bution function as it moves into a stronger field region as a
result of the first adiabatic invariance, which states that
B=v2? is a constant. A magnetized collisionless shock is ideal
for producing such distribution functions: the magnetic field
increases going from upstream to the downstream region.
The two types of electron distribution functions described
above, namely, the ring and the horseshoe easily produce
cyclotron maser radiation (Bingham & Cairns 2000), which
we now demonstrate.

1.2. CyclotronMaser RadiationMechanism

First we examine the stability of a horseshoe type of elec-
tron distribution function for R-Xmode waves propagating
perpendicular to the steady magnetic field. To obtain the
distribution function, we start with a drifting Maxwellian,
with a drift velocity well above the thermal speed, which is
typical of electrons accelerated by lower hybrid turbulence.
This is then considered to move into an increasing magnetic
field where the distribution function is readily calculated
using invariance of total energy and magnetic moment. The
distribution function is used in the dispersion relation for
the R-X mode, which is easily obtainable from the
susceptibility tensor given by Stix (1992).

We shall assume that the frequency is close to the electron
cyclotron frequency and also assume that the Larmor radius
is much less than the wavelength for typical electron veloc-
ities. This latter condition means that we need only consider
the susceptibility to lowest order in k?v?ð Þ=�e. If we neglect
all but the zero-order terms, we get the cold plasma result.
To a first approximation we need only take account of the
velocity distribution of the electrons in the resonant integral
which involves 1= !� �eð Þ, where �e is the relativistic elec-
tron cyclotron frequency eB=�me, with e the electron
charge, B the magnetic field, � the Lorenz factor, andme the
electron rest mass. In this resonant term we must take
account of the relativistic shift of the cyclotron frequency,
since this picks out a particular group of resonant electrons
and produces damping or growth of the wave.

In terms of momentum pwe have

�e ¼ �e0 1þ p2

m2c2

� ��1=2

;

where �e0 is the nonrelativistic electron cyclotron fre-
quency. For the real part of the resonant integral we can
simply take the cold plasma value. Although this goes as
1=ð!� �e0Þ and appears to be near singular at the reso-
nance, the 1=ð!� �e0Þ factors in the real part of the disper-
sion relation cancel out, as we shall see, and it behaves quite
smoothly in the vicinity of the cyclotron frequency. It is not
crucial to include small corrections to the cyclotron

Fig. 1.—Numerical solutions of eqs. (4)–(6) for a wave phase speed
� ¼ !k ¼ 0:3; k ¼ 0:2, and � ¼ 1:045, depicting phase-plane diagram for
the x and y components of the perpendicular momenta that form a ring
perpendicular to the magnetic field.
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frequency in the real part of the dispersion relation. The
refractive index n for the R-X mode, which propagates
perpendicular to the magnetic field, is given by (Stix 1992)

n2 ¼ �2? � �2xy
� �

=�? ; ð16Þ

and the dielectric tensor elements are given by

�? ¼ 1� 1

2

!2
p

!ð!þ �e0Þ
þ A ; ð17Þ

�xy ¼
1

2

!2
p

!ð!þ �e0Þ
þ A ; ð18Þ

with

A ¼ 1

4

!2
p

!

Z 1

0

2�p?dp?

Z 1

�1
dpk

1

!� �e
p?

@f0
@p?

: ð19Þ

To obtain this we have included only the �1 terms in the
sum over harmonics, which appears in the dielectric tensor
elements, and used the small argument expansion
J1ðxÞ � x=2ð Þ, where x ¼ k?v?ð Þ=�e changing the variables
to p; l; �ð Þ, spherical polars with the usual angle h replaced
with l ¼ cos � ¼ pk=p; then

A ¼ � 1

2

!2
p

!ð!� �0Þ
� i

2

!2
p

�0

Z �1

1

1� l2
� �

p20�
2
0

� @f0
@p

� l

p0

@f0
@l

� �
p ¼ p0j jdl ; ð20Þ

where � ¼ 1þ p2ð Þ1=2 and p0 is the resonant momentum
given by mc 2 �e0 � !ð Þ�e½ �1=2. A full discussion of the deri-
vation of the dispersion relation for perpendicularly propa-
gating waves can be found in Stix (1992).

Using equation (19) in equations (17) and (18) we can
analyze the stability of equation (16) with respect to induced
emission of right hand polarized radiation.

The initial beam is considered to be a drifting
Maxwellian. Figure 2 illustrates the characteristic crescent

or horseshoe distribution formed when the beammoves into
a stronger field region. Using the evolved distribution in
equation (16), we obtain the spatial growth rate shown in
Figure 3 for two initial beam energies. Figures 3a and 3b
represent the imaginary part of the refractive index as a
function of frequency for a mean beam energy of 100 keV
(Fig. 3a) and 500 keV (Fig. 3b), both with a 1% energy
spread and a magnetic field ratio of 20. The maximum
growth rate for the 500 keV beam is more than 4 times
greater than for the 100 keV beam. The analysis presented
above considers strictly perpendicular propagation. How-
ever, we have calculated the growth rates for modes that
also contain a parallel wavenumber component and find
that modes that propagate more than about 50 to the per-
pendicular do not grow. The fastest growing component is
for purely perpendicular propagation. The region of insta-
bility in frequency space is extremely narrow with a
bandwidth D!=! on the order of 0.5%.

We now consider the case of a velocity ring distribution
shown in Figure 4. The ratio of the ring density to back-
ground density is 0.2 and a ring energy much greater than
the Maxwellian background. Again using the distribution
function defined by equation (15), in equation (16) we
obtain the spatial growth rate for a ring distribution shown
in Figure 5. It should be noted that the emission from a
horseshoe or ring distribution is primarily in the plane per-
pendicular to the magnetic field, and the emission is close to
the cyclotron frequency. For higher energy beams or rings
the frequency decreases because of the relativistic mass
increase.

A parallel component of wavenumber introduces a Dop-
pler shift into the resonance condition, so that the resonant
particles no longer lie on a sphere centered on the origin in
momentum space. This means, in turn, that for any signifi-
cant Doppler shift, the resonant particles will no longer all
lie in the part of the distribution function where there is a
positive slope toward increasing energy. For this reason the
growth rate will fall off as we go away from perpendicular
propagation, and the maximum emission is expected to be
in the perpendicular direction. The instability is found to be
sensitive to the ratio of the cyclotron frequency to the
plasma frequency �ce=!pe. The instability would be
expected to occur in regions of low-background plasma
density, where two-stream and other instabilities are not
strong enough to disrupt the beam. Two-stream instabilities
have growth rates that are proportional to !pe (Krall &
Trivelpiece 1973), whereas the instability described here is
not strongly dependent on density.

2. SUMMARY AND CONCLUSIONS

In this article we have developed an analytical approach
describing the cyclotron maser instability convective spatial
growth rate. Various types of distribution functions similar
to those found at shocks lead to rapid growth of R-X mode
radiation. We suggest that the spreading in perpendicular
velocity as a beam moves into a region of increasing mag-
netic field or the formation of a velocity ring distribution,
both produced at collisionless shocks, may trigger the insta-
bility and radio emission. Our model seems to be capable of
explaining, at least in outline, the strong radio emission
from shock waves, the importance of low-density regions,
and the fact that the emission is perpendicular to the mag-
netic field. However, it is clear that a lot more detailed work

Fig. 2.—Contour plot in momentum space of the perpendicular and par-
allel electronmomentum components of the evolved horseshoe distribution
function. The contours represent constant phase-space density.
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is needed to bring the various aspects together into a com-
prehensive model. Future particle in cell simulations will
investigate self-consistently the instability starting with an
isotropic beam moving into a stronger magnetic field, which
will reveal a more realistic comparison with the observa-
tions. The model presented is also consistent with
acceleration processes associated closely with shock waves.
We have not considered the Doppler boost; this is possible

if the shocks are relativistic and will be a mechanism to
spread the wave frequency. Variations of magnetic field
strength at the shock will also act to spread the wave
frequency.

We would like to pay tribute to the late Professor John
Dawson, who played such an important role in this
research.

Fig. 3.—(a) Imaginary part of the refractive index as a function of frequency for a mean beam energy of 100 keV and a thermal spread of 1 keV. The
magnetic field ratio is taken to be 20. (b) Same as (a), except the mean beam energy is 500 keV and the spread is 5 keV.

Fig. 4.—Contour plot in momentum space of the electron momentum
components depicting a background Maxwellian and a perpendicular ring
distribution. The ratio of ring electron density to background Maxwellian
density is 0.2.

Fig. 5.—Spatial growth rate Imk? of the R-X mode for the ring
distribution shown in Fig. 4.
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