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ABSTRACT
In this paper, we give a detailed description of the first attempt to study the properties of
the flow produced by a magnetized pulsar wind within a plerionic nebula via fully relativistic
magnetohydrodynamic (MHD) simulations. Following the current theoretical models of pulsar
winds, we assume that in the equatorial direction the magnetization of the wind drops to zero
but its energy flux reaches a maximum. The results of our 2D axisymmetric simulations reveal
complex dynamics of the post-shock flow, very different from the steady quasi-radial outflow
assumed in earlier analytical models for plerions. The termination shock has the shape of a
distorted torus and most of the downstream flow is initially confined to the equatorial plane.
Provided the wind magnetization is higher than a certain value, the magnetic hoop stress stops
the outflow in the surface layers of the equatorial disc and redirects it into magnetically confined
polar jets. The outflow in the inner layers of the equatorial disc continues until it reaches the
slowly expanding outer shell and then turns back and forms the vortex flow filling the nebular
volume at intermediate latitudes. We simulated the synchrotron images of the nebula taking
into account the relativistic beaming effect and the particle energy losses. These images are
strikingly similar to the well-known images of the Crab and other pulsar wind nebulae obtained
by Chandra and the Hubble Space Telescope. They exhibit both a system of rings, which makes
an impression of an equatorial disc-like or even a toroidal structure, and well-collimated polar
jets, which appear to originate from the pulsar. A number of fine details of the inner Crab
nebula find natural explanation including the bright knot discovered by Hester et al. in 1995
very close to the Crab pulsar.

Key words: MHD – shock waves – pulsars: general – ISM: individual: Crab nebula – ISM:
jets and outflows – supernova remnants.

1 I N T RO D U C T I O N

The nature of synchrotron-emitting plerionic nebulae found in many
supernova remnants (Weiler & Panagia 1978) has been the subject
of intense research for many decades, the Crab nebula being the
best-studied and most well-known example. It is now commonly
accepted that such nebulae are produced by a relativistic magnetized
wind from the rotating neutron star formed inside the supernova
remnant during the supernova explosion. As the wind velocity is
very close to the speed of light, but the expansion of the surrounding
massive stellar envelope is much slower, the pulsar wind terminates
at a strong reverse shock and the shocked plasma fills the interior
of the envelope. The observed synchrotron emission is explained
by the conversion of the wind energy into the energy of relativistic
particles and magnetic field at the termination shock. This general
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idea was developed into a quantitative model by Rees & Gunn (1974)
and Kennel & Coroniti (1984) and was elaborated even further by
Emmering & Chevalier (1987) and Begelman & Li (1992). Since
direct observations of pulsar winds were, and still remain, rather
problematic (cf. Kirk, Ball & Skj 1999; Bogovalov & Aharonian
2000; Kirk, Skjæraasen & Gallant 2002), and in order to simplify the
calculations, these authors made the most convenient assumption on
the angular distribution of the wind power, namely that it is isotropic.

The steady progress of X-ray astronomy has resulted in the dis-
covery of a rather peculiar structure in the inner part of the Crab neb-
ula, not expected in the classical models of plerions. This so-called
‘jet–torus’ structure had already been seen in earlier observations
by Brinkmann et al. (1985) and Hester et al. (1995), but the recent
Chandra data show this structure in greater detail (Weisskopf et al.
2000; Hester et al. 2002). As similar structures have been found
in other pulsar wind nebulae (Helfand, Gotthelf & Halpern 2001;
Pavlov et al. 2001; Gaensler, Pivovaroff & Garmire 2001; Gaensler
et al. 2002; Lu et al. 2002), this is likely to be a generic phenomenon.
The Crab ‘torus’ is the most prominent component of the structure.
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Whether this is really a torus or rather a disc normal to the rotational
axis of the pulsar is not yet clear, but its mere existence suggests a
high degree of anisotropy of the MHD flow in the inner part of the
Crab nebula, which has to be related to the anisotropy of the pulsar
wind itself.

Although no comprehensive theory of the relativistic winds from
obliquely rotating pulsars yet exists, the available idealized models
show that such winds are likely to be highly anisotropic, with most
of the energy flowing out near the equatorial plane. Indeed, in the ax-
isymmetric split-monopole solution for the aligned rotator (Michel
1973), the Poynting flux is proportional to sin2θ , where θ is the
polar angle. Such a distribution is a natural feature of axisymmetric
MHD flows because in the far zone the magnetic field is almost
azimuthal and, thus, must vanish at the symmetry axis (Ingraham
1973; Michel 1974). The situation is less clear for the winds from
oblique rotators; however, the results of Bogovalov (1999) suggest
that the angular distribution of their Poynting flux may not be all
that different after all.

Using the approximation of constant post-shock pressure,
Lyubarsky (2002) and Bogovalov & Khangoulyan (2002a) have
already studied some properties of the termination shock of the
split-monopole wind. They found that the shock has the shape of a
torus aligned with the symmetry axis. These results strongly sup-
port the idea that the origin of the Crab torus has to be sought in the
anisotropy of the pulsar wind. Bogovalov & Khangoulyan (2002b)
also modelled the synchrotron emission from the post-shock region,
assuming a constant-pressure radial flow. However, this assumption
is hard to justify as the termination shock is very oblique at high
latitudes. This seems to be one of the reasons why their simulated
images are too wide and diffusive compared to the observations.

The jet of the Crab nebula, as well as the jets of other pul-
sars, appears to originate from the pulsar and to propagate along
the rotational axis. This seems to indicate that they are formed
within the pulsar wind and collimation by magnetic hoop stress
suggests itself. However, such a collimation is found to be ex-
tremely ineffective in ultrarelativistic flows (Tomimatsu 1994;
Beskin, Kuznetsova & Rafikov 1998; Chiueh, Li & Begelman
1998; Bogovalov & Tsinganos 1999; Bogovalov 2001; Lyubarsky &
Eichler 2001). Moreover, jets of such origin would have to be ultra-
relativistic whereas the observed jets are certainly not. Indeed, the
mere fact that both the jet and the counter-jet are seen in the images
of the Crab and the Vela nebulae (Weisskopf et al. 2000; Helfand
et al. 2001) alone rules out ultrarelativistic speeds. Moreover, direct
observations of the proper motion in the Crab and Vela jets indicate
rather moderate velocities of ≈(0.3–0.7)c only (Hester et al. 2002;
Pavlov et al. 2003). These problems stimulated recent attempts to
find alternative explanations of the pulsar jets.

Bogovalov & Khangoulyan (2002b) interpreted the nebula jets
as high particle density polar regions of the flow downstream of
the termination shock. In their purely hydrodynamical model, there
is no pressure and energy density excess at the axis; the particle
density increases towards the axis only because the particle energy
decreases. It is difficult to see how this enhanced density of low-
energy particles (∼100 MeV in their model) can result in higher
synchrotron emissivity in the X-ray band. Moreover, their analysis
is too hampered by the assumption of constant-pressure radial post-
shock outflow.

Lyubarsky (2002) pointed out that, although the magnetic col-
limation is futile in the pulsar wind itself, it becomes much more
effective downstream of the termination shock where the flow is
no longer ultrarelativistic and proposed that the Crab jet could be
formed via magnetic collimation in this region. In his model, the

observed jet-like feature arises naturally because of the axial com-
pression of the synchrotron-emitting plasma. The jet appears to orig-
inate from the pulsar simply because the termination shock is much
closer to the wind origin along the symmetry axis. There is no way
of testing this hypothesis other than to solve the problem of inter-
action between a highly anisotropic, relativistic, magnetized wind
and its environment, which could be a supernova ejecta or interstel-
lar medium (ISM). However, this problem is too complicated for
modern analytical techniques and only numerical simulations can
provide us with required answers. Fortunately, dramatic progress in
numerical methods for relativistic gas dynamics and MHD in recent
years has made such an approach possible (Marti & Muller 1999;
Komissarov 1999a). In Komissarov & Lyubarsky (2003) we briefly
described the results of the first ever such study. In this article we
give a detailed account of it.

In Section 2 we describe the basic assumptions of our mathemat-
ical model. Section 3 outlines the main features of our numerical
technique and the setup of simulations. The results of simulations
are described in Section 4. To make direct comparison with the ob-
servations, we need to model the synchrotron emission from the
nebula. This model and the simulated synchrotron images are de-
scribed in Section 5. The implication of our results for the theory
of plerions is discussed in Section 6. The final section (Section 7)
summarizes our conclusions.

2 T H E M O D E L

To set up the simulations we need to specify both the pulsar wind
and the surrounding medium with which this wind is interacting.
Here we describe rather simplified models for these two compo-
nents, which by no means represent the full complexity of the real
phenomena and undoubtedly will be revised in the future. However,
they seem to be quite adequate to the present level of our under-
standing of this problem.

2.1 Pulsar wind

It is widely believed that the relativistic magnetized winds from
neutron stars can be described as axisymmetric, supermagnetosonic
radial outflows with purely azimuthal magnetic field (e.g. Chiueh
et al. 1998). The only global solutions currently available for pul-
sar winds assume the split-monopole topology of magnetic field
(Michel 1973; Bogovalov 1999). Although real winds are likely
to be more complex, we believe that the split-monopole solutions
capture, at least qualitatively, some of their main properties. For ex-
ample, these solutions have a highly anisotropic distribution of the
energy flux that may explain the origin of the observed X-ray tori
in plerionic nebulae (Lyubarsky 2002; Bogovalov & Khangoulyan
2002a).

Therefore we assume the same distribution of the total energy
flux, f tot, as in the split-monopole solution, namely

ftot = ( f0/r 2)(sin2 θ + 1/σ0), (1)

where r and θ are the usual spherical coordinates. The first term
in the brackets represents the Poynting flux whereas the second
one accounts for the small initial contribution of the wind particles.
At larger distances, a significant part of the Poynting flux may be
converted into kinetic energy but the total energy per particle is
conserved along the streamlines and, thus, the angular distribution
(1) remains unchanged. However, the asymptotic distributions of
magnetic field, density and velocity in the wind do depend on details
of the conversion mechanism. Although this mechanism remains a
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subject of ongoing debate, a number of recent results seem to give
us a clue of what it could be.

When considering the energy conversion in the pulsar wind, one
should take into account the fact that pulsars are oblique rotators,
i.e. their magnetic axis is inclined with respect to their rotation axis.
Close to the pulsar, the Poynting flux is transported partly by the
oscillating component of the electromagnetic field and partly by
its mean component. In the polar region, where the magnetic field
does not alternate, the oscillating component has the form of a fast
magnetosonic wave. Owing to non-linear steepening and subsequent
formation of multiple shocks, such waves decay and transfer their
energy to particles. Lyubarsky (2003a) found that, in the case of a
rapidly spinning pulsar, such as the Crab pulsar, these waves may
have decayed well before the termination shock.

In the equatorial region, the magnetic field alternates, being con-
nected to a different magnetic pole every half-period. Such a flow
is known as the striped wind (Michel 1971; Bogovalov 1999). The
electromagnetic energy of the striped wind dissipates because of
current starvation in the current sheets separating strips with oppo-
site magnetic field (Usov 1975; Michel 1982, 1994; Coroniti 1990;
Lyubarsky & Eichler 2001; Kirk & Skjæraasen 2003). The dissipa-
tion scale may exceed the termination shock radius. However, when
the striped wind enters the shock, the alternating field immediately
annihilates and the post-shock parameters take the same values as
if the alternating field had annihilated already in the upstream flow
(Lyubarsky 2003b). Thus, in our study of the MHD flow in the vicin-
ity of the termination shock, we may safely assume that all the waves
have already decayed and transferred their energy to the particles.
In such a case, the mean magnetic field is no longer described by
the simple sin θ dependence on the polar angle but vanishes at θ =
π/2 as well.

To account for these properties of the pulsar wind we assume that
its magnetic field satisfies the equation

B =
√

4π f0

c

ξ

r
sin θ

(
1 − 2θ

π

)
(2)

for θ �π/2, where B is the magnetic field as measured by the fiducial
inertial observer at rest relative to the pulsar. The free parameter ξ

� 1 controls the magnetization of the wind. The kinetic energy flux
of such a wind is then found as

fk ≡ ρc2γ v = ftot − (B2/4π)c, (3)

where ρ is the mass density as measured in the flow frame, and v

and γ are the wind velocity and Lorentz factor as measured by the
fiducial observer. For the ultrarelativistic flow, v → c, the post-shock
plasma is relativistically hot and the dynamics of the downstream
flow depends only on the product ργ . Therefore, the angular dis-
tributions of density and velocity in the wind may be chosen quite
arbitrarily provided the product ργ is fixed.

2.2 External medium

In the classical model of the Crab nebula it is assumed that the pul-
sar wind is confined by its supernova remnant (Kennel & Coroniti
1984). Although this assumption seems quite natural, the obser-
vational evidence for such a remnant has been surprisingly scarce
(Sankrit & Hester 1996). This could be explained if the Crab super-
nova exploded in a very rarefied environment and its ejecta had been
freely expanding ever since. Therefore, we assume that the nebula
is confined by cold and dense plasma expanding with constant ve-
locity vc. In addition, we totally ignore the line-emitting filaments
of the Crab nebula. Their total mass is about 1–2 solar masses and

they are likely to be dynamically important. However, we had to
ignore them in order to keep the problem relatively simple.

Under such conditions and the assumption of a steady pulsar
wind, the nebula has to evolve in a self-similar fashion (Emmering
& Chevalier 1987). Such a property is very welcome as it suggests a
clear strategy for the numerical experiment. The simulations can be
terminated as soon as the numerical solution has more or less settled
to this self-similar pattern. There is little sense in continuing them
further as not much additional information can be obtained after this
point. After this, the solution can be compared with observations by
means of simple scaling.

During the self-similar phase the characteristic length scale grows
linearly with time, r ∝ t , whereas the gas pressure and magnetic field
vary as

p, B2 ∝ Wv−3
c t−2 ∝ Wv−1

c R−2
c , (4)

where W is the wind power and R c is the size of the nebula.

3 N U M E R I C A L M E T H O D A N D S E T U P
O F S I M U L AT I O N S

To carry out these simulations we used essentially the same sec-
ond order in space and time Godunov-type scheme for relativistic
MHD as described in Komissarov (1999a) and later used in numer-
ical studies of relativistic MHD jets (Komissarov 1999b). The main
modifications include (1) explicit reduction of the scheme to first
order in both space and time for strong shocks and (2) the introduc-
tion of a variable time-step adjusted to the properties of a spherical
grid.

We had to reduce the scheme to first order because we found that
the original second-order scheme could not handle strong ultrarel-
ativistic shocks that were stationary relative to the computational
grid unless the magnetization of the flow was rather weak.

The radial nature of streamlines in the pulsar wind suggests uti-
lization of spherical coordinates {φ, r , θ}. However, on a spherical
grid with fixed angular size �θ of computational cells, their spatial
size �ri = ri�θ grows like r. As the Courant time-step stability
condition requires �t < �ri/c, the time-step suitable for the outer
part of the computational domain can be much larger than that for
its inner part. To reduce the computational cost, we split the compu-
tational domain into a set of rings such that the outer radius of each
ring is twice its inner radius and advanced the solution separately
for each kth ring with its own time-step, �tk, such that �t k+1 =
2�tk. As a result, the outer regions of the computational domain are
progressively less expensive in terms of computational time.

The basic components of this numerical scheme were subjected
to rigorous testing as described in Komissarov (1999a). A number of
additional simulations have been carried out to test the simple mod-
ifications dictated by the nature of the spherical grid. Non-magnetic
test problems included the standard problems of spherical and cylin-
drical blast waves, as well as the problem of a spherically symmet-
rical wind with standing termination shock. In the magnetic regime
we considered the Z-pinch problem using the equilibrium solution
described in Komissarov (1999b). This configuration is known to be
unstable and the solution is expected to stay near equilibrium only
for a time comparable with the sound crossing time (e.g. Begelman
1998). The results of computer simulations are fully consistent with
such expectations.

Table 1 contains the values of the main parameters of these sim-
ulations, and our choice of some of them requires an explanation.
The ratio of the shock dimensions along the polar axis, Rp, and the

C© 2004 RAS, MNRAS 349, 779–792



782 S. S. Komissarov and Y. E. Lyubarsky

Table 1. Parameters of numerical models.

Wind power constant f 0 1.0
Wind asymmetry constant σ 0 10
Wind Lorentz factor γ w 10
Wind magnetization parameter ξ 0.0, 0.2, 0.3, 0.5
Envelope speed ve 0.017
Envelope density ρ e 104

Inner grid boundary r 0 0.2, 0.1, 0.1, 0.04
Initial cavity radius r c 2.0
Ratio of specific heats � 4/3

equatorial plane, R eq, may be estimated as

Rp/Req ∼ 1/
√

1 + σ0. (5)

This follows from the results obtained in Lyubarsky (2002) under
the assumption of uniform pressure downstream of the termination
shock. Thus, for the widely accepted value of σ 0 = 104 for the Crab
pulsar, the equatorial size of the termination shock is expected to be
100 times larger than its size along the polar axis. In fact, the results
of our simulations show that equation (5) underestimates this ratio
by a factor of 2–3, as the total downstream pressure near the axis is
significantly higher due to the magnetic pinch of the shocked plasma.
The anisotropy of the termination shock determines the range of
linear scales required both to capture the large-scale structure of
the flow in the plerionic nebula and to ensure that the whole of
the termination shock is inside the computational domain. If the
polar part of the termination shock becomes submerged into the
central hole of the grid, this can be handled by switching to the
‘solid wall’ boundary condition in the corresponding polar region
of the inner boundary which prevents plasma from sinking below
r = r 0. This makes sense because even if the shock dives all the
way down to the star surface the relativistically hot plerion plasma
cannot be accreted by the pulsar. Obviously, the solution will be
distorted as a result, but, provided this polar region is relatively
small, the distortion is expected to be rather limited. Indeed, most
of the energy is carried out by the wind in the equatorial direction.
Initially, we used σ 0 = 100 and utilized the solid wall boundary
in the polar region. Later, as this approach met with criticism, we
reduced σ 0 down to 10 and also reduced r 0 ensuring that the whole
of the termination shock was inside the computational domain. This
noticeably increased the computational cost but the outcome turned
out to be very similar. In this paper, we only present results for
σ 0 = 10.

As we have explained in Section 2 the flow dynamics does not
depend much on the exact value of the wind’s Lorentz factor as long
as it remains much larger than 1. On the other hand, too high a value
of γ is not easy to deal with in this numerical scheme. The adopted
value of γ = 10 seems to be a reasonable compromise.

The range of ξ covered in our simulations allows one to trace
the transition from the ‘jet–torus’ morphology to the ‘lonely torus’
morphology of numerical solutions (see Section 4). In the pulsar lit-
erature, the wind magnetization is typically measured by parameter
σ , defined as the ratio of the Poynting flux to the kinetic energy flux
(e.g. Kennel & Coroniti 1984). According to equations (2) and (3),
the local value of σ is zero at the equator, reaches the maximum
value of σ = ξ 2 near the symmetry axis, and then sharply decreases
to zero at the axis. The mean value of σ , defined as the ratio of the
total energy transported by the electromagnetic fields to the total
energy transported by the particles, is

σm = c〈B2〉/4π〈 fk〉 ≈ 0.1ξ 2. (6)

For the values of ξ given in Table 1, one has σ m = 0, 4 × 10−3, 9 ×
10−3 and 2.5 × 10−2, respectively. These values are comparable with
the earlier estimates based on highly simplified analytical or semi-
analytical models (Kennel & Coroniti 1984; Emmering & Chevalier
1987; Begelman & Li 1992).

In order to account for the expanding envelope surrounding the
plerion, the initial solution includes a cold, dense, uniform, unmag-
netized plasma of mass density ρ e = 104 and radial velocity ve =
0.017c (= 5000 km s−1). This density is about 106 times higher
than the typical proper density of the wind at r = 1. For such a high
value, the plerion cavity is forced to expand with speed close to ve.
In fact, the resultant value of vc � (0.02–0.03)c is still ≈3–4 times
higher than the mean expansion speed of the Crab nebula, 0.007c
(= 2000 km s−1), deduced from the observations. Such high values
of vc resulted in further decrease of the computational cost. Fortu-
nately, scalings like equation (4) can be used to evaluate the effect
of lowering vc.

The results of the simulations will be presented in dimensionless
form such that the speed of light is c = 1. In order to scale the results
to the spatial size of the Crab nebula, the appropriate unit of length
is L 0 = (1/3)pc = 1018 cm and the corresponding unit of time is
then T 0 = 1yr = 3 × 107 s. The unit of mass required to scale the
wind power to the observed spin-down power of the Crab pulsar,
5 × 1038ergs−1, is M 0 = 6.6 × 1024 g. The corresponding unit of
magnetic field is then B 0 = 4.4 × 10−5 G.

The initial radius of the plerion cavity, r c, is significantly higher
than the inner radius of the computational domain in order to ensure
that the termination shock is not pushed back out of the domain
soon after the start of simulations. At t = 0, the region with r<r c is
filled with the unshocked pulsar wind and, thus, the initial solution
is far from the desired self-similar phase. The transition is expected
to take place when the cavity volume becomes much larger than its
initial value.

The main cost-reducing factor is, of cause, the condition of exact
axisymmetry. We believe that this is a severe constraint that one
must always keep in mind when making comparisons between the
results of 2D simulations with real 3D phenomena. Some features
are expected to be artificially strengthened whereas others are ex-
pected to be prohibited altogether. Moreover, we also imposed the
symmetry boundary condition in the equatorial plane, thus reducing
the computational cost by another factor of 2.

The simulations were carried out in two steps. During the first
step, up to t = 140, the computational grid has 80 cells in the θ

direction and 240 cells in the radial direction. By the end of this stage,
the numerical solution seems to approach the self-similar regime.
During the second stage, up to t = 190, the numerical resolution is
higher by a factor of 2, thus allowing us to study the central region
of the flow in greater detail.

4 F L OW DY NA M I C S

Fig. 1 shows the evolution of the ξ = 0.5 model during the first stage
of the simulations (at lower resolution). One can see that it proceeds
more or less in agreement with the results of Begelman & Li (1992).
Indeed, with the exception of the central region around the termi-
nation shock the total pressure depends mainly on the cylindrical
radius, w = rsin θ , and reaches a maximum on the symmetry axis.
Such pressure distribution leads to a somewhat higher expansion
speed in the axial direction, which results in the noticeable elonga-
tion of the nebula.

The origin of the small bumps in the equatorial plane is somewhat
different. As one can see in Fig. 2, which shows the solution by the
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Figure 1. Total pressure distribution for the ξ = 0.3 model at t = 40 (top left), 90 (top right) and 140 (bottom).

end of the second stage, at t = 190, the outflow from the termination
shock is not radial, as assumed in the classical model of pulsar
nebulae (Kennel & Coroniti 1984; Emmering & Chevalier 1987)
and in many other studies (e.g. Bogovalov & Khangoulyan 2002a,b;
Bucciantini et al. 2003; van der Swaluw 2003; Shibata et al. 2003),
but mostly confined to the equatorial plane. The typical velocity of
the equatorial outflow is about 0.6c, which is only slightly less than
the local magnetosonic speed. Such a high velocity means high ram
pressure of the outflow and this explains the origin of the equatorial
bumps. Moreover, the speed of the equatorial outflow is much higher
than the expansion speed of the nebula, and plasma supplied by the
outflow into the bump region is then pushed back into the cavity. This
must be the origin of the large-scale backflow just above and below
the equatorial outflow which is clearly seen in Fig. 2. Its velocity is
still quite high, (0.1–0.3)c, and when it reaches the central region
it forms another outflow that eventually creates a large-scale vortex
inside the nebula at intermediate latitudes. Within r =0.5 one can see
another thin backflow originating from the surface of the equatorial

outflow. The nature of this backflow, which is quite different from
the nature of the large-scale backflow, will be explained later.

Another remarkable feature of Fig. 2 is the two highly collimated
polar jets whose velocity, v j ≈ 0.5c, is also only slightly lower than
the local magnetosonic speed. In all models where these jets are
observed they appear at a very early stage of simulations, around t
= 10, and then remain a permanent feature of the solution. We will
discuss the origin of these jets later in this section.

The left panel of Fig. 2 shows the ratio of the magnetic pressure
to the gas pressure. This ratio is highest in the surface layers of
the equatorial outflow, reaching there values of 2–3, whereas in the
main volume of the nebula it is around 0.5–1. Such high values
indicate that the magnetic field plays an important dynamical role
in the evolution of the nebula.

Fig. 3 provides more detailed information about the central part
of this solution by the end of the second stage of the simulations (at
higher resolution). The pressure plot reveals a rather complicated
structure of the wind termination shock. In fact, this is not a single
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Figure 2. The ξ = 0.3 model at t = 190. Left panel: Ratio of magnetic to gas pressures, pm/pg. Right panel: Magnitude and direction of velocity.

shock but a complex of five shocks originating from two parallel
junction circles located at (z, w) = (±0.1, 0.6). We shall refer to
the shock connecting this junction with the polar axis as the ‘arch
shock’, to the almost cylindrical shock crossing the equator as the
‘Mach belt’, whereas the remaining relatively weak and short shock
making the angle around 45◦ with the equatorial plane will be called
the ‘rim shock’.

The flow passes the arch shock at a rather oblique angle and
remains supermagnetosonic, with the typical speed being around
(0.8–0.9)c, until it passes through the rim shock. Such a high velocity
means that any emission from this region is subject to strong Doppler
beaming. We shall call this high-velocity outflow just above the arch
shock the ‘ϒ stream’. Downstream of the rim shock both the gas
pressure and the magnetic pressure reach a local maximum.

As one can see in Fig. 3, the magnetic field is particularly strong
near the outer boundary of the ϒ stream. In fact, the ϒ stream
consists of streamlines originating from different sections of the
arch shock. As we move away from the shock across the ϒ stream,
we meet streamlines that are progressively closer to the polar axis in
the wind zone. Since the local magnetization of the wind, σ , mainly
increases towards the polar axis, so does the ratio of the magnetic
pressure to the gas pressure in the post-shock state. As a result, the
outer layers of the ϒ stream are most affected by the magnetic force.

Fig. 3 also explains the origin of the inner backflow and the polar
jets which are already seen in Fig. 2. Clearly, the inner backflow is
fed by the surface layers of the equatorial outflow. This is because
the magnetic hoop stress in the surface layers is so strong that it first
stops the outflow and then forces its plasma to flow back towards
the symmetry axis. Eventually, as the backflow converges towards
the axis, the hoop stress of its magnetic field creates strong com-
pression in the region just above the cusp of the arch shock and,
hence, drives the outflow in the polar direction. Thus, the polar jets

are pressure-driven and magnetically collimated. Our conclusion on
the role of magnetic field in the jet formation is supported by the
results presented in Fig. 4. Once the value of the wind magnetization
parameter ξ becomes as low as ξ = 0.2, fast polar jets are no longer
produced.

Another interesting result seen in Fig. 4 is the dependence of the
termination shock on the wind magnetization. Whereas the size of
the whole nebula is approximately the same for all our models, the
size of the termination shock significantly decreases with ξ , in gen-
eral agreement with the results obtained in Emmering & Chevalier
(1987). The self-similar solution of Emmering & Chevalier exists
only for σ < vc/(c − vc), where vc is the velocity of the cavity
boundary, (0.2–0.3)c in our case. In our ξ = 0.5 model the mean
wind magnetization is as high as 2.5 × 10−2 (see equation 6); in
this case the solution shows signs of oscillatory behaviour, which
may be related to the existence of the upper boundary of σ in the
Emmering–Chevalier model. This oscillatory behaviour is clearly
seen in Fig. 5 in the neighbourhood of the termination shock.

Finally, Fig. 6 shows tongues of the envelope plasma entering
the low-density plerionic nebula. Such behaviour is expected as the
result of the Rayleigh–Taylor instability at the envelope–nebula in-
terface. The fact that these tongues are most prominent near the
equatorial plane and the polar axis seems to indicate that the devel-
opment of this instability is strongly affected by anisotropy of the
global flow in the nebula.

5 S Y N C H ROT RO N E M I S S I O N

The observed synchrotron emission is produced by high-energy non-
thermal particles whose evolution, including acceleration, diffusion
and energy losses, was not accurately taken into account in our simu-
lations. Instead, we used the following simple model. Let us assume
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Figure 3. The termination shock complex of the ξ = 0.5 model at t =
170. Top panel: Gas pressure and velocity vectors. Middle panel: The ratio
pm/pg and velocity vectors. Bottom panel: Lorentz factor and velocity. In
these figures, as well as in other figures throughout this paper, the top and/or
bottom values of the colour scale show not the real maximum and minimum
values of the parameter shown but the saturation levels of the colour scale.

that the relativistic electrons and positrons have a pure power-law
energy distribution, N (E) = N 0 E−p , with p = 2.2 corresponding
to the observed X-ray spectrum of the Crab. In this case, the syn-
chrotron emissivity as measured by an observer at rest relative to
the pulsar is

εν ∝ N0 D2+α(B ′
⊥)α+1, (7)

where α = (p − 1)/2,

D = ν

ν ′ = 1

γ (1 − n · β)
(8)

is the Doppler factor, n is the unit vector pointing towards the ob-
server, β = v/c is the fluid velocity as measured in the observer
frame, B′⊥ is the component of magnetic field perpendicular to the
unit vector n′ pointing towards the observer in the fluid frame, and
n′ and n are related via

n′ = D

{
n + β

[
β · n
β2

(γ − 1) − γ

]}
. (9)

To take into account the synchrotron losses we simply introduce
an additional factor, exp[−(t−t inj)/t c], where t c is the cooling time.
Moreover, we assume that N 0 is proportional to the gas pressure.
This takes into account, to some extent, the variation of specific
volume. Thus, the actual equation for the synchrotron emissivity
we used is

εν = constant × pg D2+α(B ′
⊥)α+1 exp[−(t − tinj)/tc]. (10)

The synchrotron cooling time is given by

tc ≈ 6 × 1011

√
B3ν

.

Using the typical magnetic field strength in the central part of the
equatorial outflow, ≈4B 0 ≈ 1.8 × 10−4 G (see Fig. 3), we find that
in the Chandra band t c ≈ 10T 0 (we used ν = 7 × 1017 Hz, which
corresponds to 2.7 keV) and in the optical band t c ≈ 350T 0, which
exceeds the computational time. In addition, we forced εν = 0 in
the wind zone and, thus, the synchrotron emission originates only
from the shocked plasma.

Fig. 7 shows the simulated X-ray maps for the ξ = 0.5 model
at different epochs for the same angle between the line of sight
and the polar axis as derived for the Crab and the Vela nebulae, 60◦

(Weisskopf et al. 2000; Helfand et al. 2001). Since the flow structure
in this model is highly variable (see Section 4), its X-ray appearance
varies too. Fig. 8 shows the simulated X-ray maps for the ξ = 0.2
model (this solution does not show such a dramatic variability as
the ξ = 0.5 model) at different viewing angles. Notice that these
maps have no component corresponding to the pulsar itself and that
the emissivity is set to zero within the termination shock. Thus all
features seen in these maps originate downstream of this shock.

In all cases the simulated X-ray images show a system of rings
that make an impression of a disc-like or sometimes even a toroidal
structure. Its surface brightness rapidly decreases with distance from
the centre as a result of a combination of three factors: (1) the syn-
chrotron ageing, (2) the decline of gas pressure, and (3) the decline
of magnetic field strength in the equatorial outflow with distance
from the pulsar.

The disc surface brightness is lower on the jet side (which is in the
lower half of the images) as the result of Doppler beaming, which is
the only reason for the breakdown of mirror symmetry with respect
to the x-axis.

The most prominent feature of the disc is a very bright arc in its
upper half. We will refer to this as the ‘main arc’. In the middle
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Figure 4. Velocity distribution near the termination shock at t = 190 for models with ξ = 0.1 (top left), ξ = 0.2 (top right), ξ = 0.3 (bottom left) and ξ = 0.5
(bottom right).

map for the ξ = 0.2 model it is located at y ≈ 1.0 and extends
from x ≈ −1 to x ≈ +1 (see Fig. 8). Its origin is explained in
Fig. 9. As one can see, there are two regions in the ϒ stream where
the velocity vector points almost directly towards the observer.
Since the flow in the ϒ stream is still relativistic (see Section 4),
the synchrotron emission from these regions is subject to strong
Doppler boosting. The main arc is identified with region 2 in this
sketch.

In some of the maps, the main arc appears to be attached to one of
two almost identical and very thin rings of emission encircling the
centre. These ‘central rings’ originate from the pair of rim shocks
discussed in Section 3. In Fig. 9 they are designated by the letter ‘R’.
Since they indicate the position of the Mach belt, the most distant
part of the termination shock complex, they provide a convenient
reference for identification of all other features. The Mach belt itself

is not a prominent feature because of its relatively low magnetic field
and weak Doppler boosting. Other rings of emission seen in Figs
7 and 8 further away from the centre originate in the equatorial
outflow.

All simulated maps reveal a bright central source which has noth-
ing to do with the emission from the pulsar itself. Since the emis-
sivity is set to zero within the termination shock, all features seen in
these maps originate downstream of this shock. In fact, the central
source has two components. The brightest component is produced
by the Doppler-boosted emission from the region of the ϒ flow
shown in Fig. 9 as region 1. In physical space, this region is located
much closer to the pulsar than region 2. In the plane of the sky, it
is seen even closer than it really is because of the shape of the arch
shock (see Fig. 9). Moreover, unless the viewing angle is smaller
than the angle between the arch shock and the polar axis in the cusp
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Figure 5. Variability of the disc flow in the ξ = 0.5 model. The solution is
shown at t = 150 (top panel), t = 170 (middle panel) and t = 180 (bottom
panel). The displayed parameter is the ratio of magnetic and gas pressures.

region of the shock, this component appears on the jet side of the
polar axis (see Fig. 10).

Another weaker component of the central source is produced by
the emission of the high-pressure regions at the base of the polar jets.
Since the flow velocity in these regions is rather small, this com-
ponent is more or less symmetric relative to the x-axis. It becomes
relatively more prominent in models with higher wind magnetiza-

Figure 6. Proper density distribution for the ξ = 0.5 model at t = 190
(logarithmic scale).

tion. The symmetric central component of the map shown in the
upper panel of Fig. 7 seems to have this origin.

Finally, the rather thin and faint jet-like features seen in Figs 7
and 8 correspond to the polar jet approaching the observer. The
counter-jets are hardly seen at all in these maps.

The most bizarre map of the ξ = 0.5 model, reminiscent of a car
wheel (the middle panel of Fig. 7), is shown again in Fig. 11 but
now using the linear scale. In this presentation it looks remarkably
similar to the Chandra map of the Vela nebula (Helfand et al. 2001;
Pavlov et al. 2001, 2003).

6 D I S C U S S I O N

The discovery of the ‘jet–torus’ structures in the pulsar wind neb-
ulae was so unexpected that it prompted calls for the revision of
their theory. The most radical of these proposes to abolish the MHD
approximation altogether and to develop a purely electromagnetic
model (Blandford 2002; Michel 2004). The results of numerical
simulations presented in Sections 3 and 4 convincingly demonstrate
that the ‘jet–torus’ structures can be explained, at least in principle,
within the framework of the magnetohydrodynamic approach pro-
vided one allows for the anisotropy of pulsar winds. Moreover, the
apparent likeness between the simulated and the observed X-ray im-
ages of pulsar nebulae exceeded our most optimistic expectations.

Indeed, the simulated images show a system of rings, which gives
the impression of a disc-like or even a toroidal structure, and jets
aligned with the rotational axis of the pulsar. In good agreement
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Figure 7. Synchrotron X-ray images for ξ = 0.5 model at different epochs:
t = 170 (top), 180 (middle) and 190 (bottom). The viewing angle is 60◦.
Note that the X-ray brightness is shown using logarithmic scale.

Figure 8. Synchrotron X-ray images for ξ = 0.2 model at t = 190. The
viewing angle is 30◦ (top), 60◦ (middle) and 80◦ (bottom). Note that in the
top image the X-ray brightness is shown using a linear scale whereas the
other images have a logarithmic scale.
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Figure 9. Synchrotron X-ray image for ξ = 0.5 model at t = 180. The
viewing angle is 60◦. This image is shown using a linear scale.

Figure 10. Central part of the optical image for ξ = 0.2 model at t = 190.
The viewing angle is 60◦. This image is shown using a linear scale.

with the observations, the rings are brighter on the counter-jet side
(Weisskopf et al. 2000; Helfand et al. 2001). In our model, this
asymmetry, as well as the brightness contrast between the jet and
the counter-jet, is caused by the Doppler beaming effect.

The central source located in the simulated maps close to the
position of the pulsar is an invariably bright feature of these maps
and must have an observational counterpart if our model is correct.
So, we have thoroughly studied the published images of the Crab
nebula in the search for such a counterpart and we believe that
we have found one. We believe that it is the very bright ‘knot’
discovered by Hester et al. (1995) 0.65 arcsec to the south-east of

1

2

R

R

R

R

Figure 11. Origin of the brightest features in the simulated X-ray images in
Figs 7–9. Here the dashed lines point towards the distant observer. In the
shaded regions 1 and 2 the flow velocity is aligned with the line of sight; the
synchrotron emission from these regions is strongly Doppler-boosted. These
are identified with the ‘central source’ and the ‘main arc’ in the simulated
X-ray maps. Letter R shows the high-pressure regions just downstream of
the ‘rim shocks’, which give rise to the thin inner rings of the maps.

the Crab pulsar. Fig. 10 shows the central part of the optical image
for the ξ = 0.2 model at t = 190 for the same viewing angle as in
the Crab. This image is remarkably similar to the HST image shown
in fig. 7 in Hester et al. (1995). In both maps the central knot is
located along the jet axis. In both maps it is on the same side of the
pulsar as the main jet. In both maps it is elongated in the direction
perpendicular to the jet axis. In our model, all these properties are
determined by the toroidal shape of the arch shock and the Doppler
beaming effect (see Section 5). Finally, both images show a thin
wisp on the counter-jet side of the pulsar. In our model, this wisp
corresponds to the rim shock of the termination shock complex.

Just like in the X-ray maps of the Crab nebula, the simulated
jets appear to originate from the pulsar. Their velocity (≈0.5c, see
Section 3) is very similar to that inferred from the observations of
proper motion in the jets of both the Crab (Hester et al. 2002) and
the Vela (Pavlov et al. 2003) nebulae.

The proper motion of the famous wisps of the Crab nebula indi-
cate an outflow with velocity of ≈0.5c within the X-ray torus (Hester
et al. 2002). This is consistent with the typical value of velocity in
the equatorial outflow beyond the Mach belt found in our simula-
tions (see Section 3). The slowing down of these wisps near the outer
edge of the X-ray torus reported by Hester et al. (2002) could well
be related to the magnetic braking of the surface layers of the equa-
torial outflow discussed in Section 3. Although in the inner layers of
the equatorial disc the magnetic braking is not that effective, these
layers are less luminous as a result of their weak magnetic field.
Observations indicate that wisps emerge directly from the vicinity
of the inner ring of the Crab nebula (Hester et al. 2002), which
we tentatively identify with the Mach belt of the termination shock
complex. This property also has a natural explanation in our model,
as the emission from the ϒ flow is largely beamed away from the
line of sight.

The nature of moving wisps, however, remains uncertain. They
could be easily produced if the pulsar wind was not stationary
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(e.g. Lou 1998). Alternatively, they could arise as the result of
MHD instability in the flow downstream of the termination shock
(Begelman 1999). In fact, the high-pressure cusp region at the base
of the polar jet may well be the source of strong perturbations. In-
deed, our simulations show that this is not just a stagnation zone but a
rather active region exhibiting unsteady vortex motions (see Fig. 3).
Notice, however, that numerical viscosity and diffusion efficiently
dump short-wavelength perturbations quickly moving relative to the
grid. This suggests that proper wisps may be found only in simula-
tions with much higher spatial resolution.

Alternatively, the wisps may originate via physical processes to-
tally ignored in our model. In fact, most of the proposed explanations
for the wisps are based on effects, such as finite Larmor radius of
ultrarelativistic ions (Gallant & Arons 1994; Spitkovsky & Arons
2000), synchrotron instability (Hester 1998) or drift instability
(Chedia et al. 1998), that are not accommodated within the frame-
work of ideal MHD.

One of the important quantitative parameters of the model, which
can be tested against observations, is the ratio of the characteristic
sizes of the termination shock, l s, and the nebular cavity, l c. Assum-
ing that in the Crab nebula l s is given by the radius of the so-called
‘inner ring’ and l c by the equatorial size of the radio image at λ =
20 cm (Wilson et al. 1985), this ratio is l s/l c ≈ 0.05. In the ξ = 0.3
model we have l s/l c ≈ 0.12, which is significantly higher. However,
for numerical reasons, the expansion speed of the simulated nebula
is set to be about four times higher than the observed speed, and this
prohibits direct comparison. In order to account for this difference
in vc, one has to know how the solution scales with vc. In the gas
dynamic limit, it is found (Rees & Gunn 1974) that

ls/lc ≈
√

vc/c. (11)

Assuming that in the case of weakly magnetized winds l s/l c still
scales as

√
vc, we find that for the Crab’s value of vc this ratio would

be l s/l c ≈ 0.06, which is close to the observed ratio.
Similar scaling can be used to deduce the magnetic field strength

we would have if we used the Crab’s value of vc. According to
equation (4) one has to multiply our value of B by an additional factor
of 2. For the ξ = 0.3 model this gives us B ≈ 150 µG in the main
body of the nebula and up to ≈450 µG in the upper layers of the ϒ

stream. These numbers can be compared with the observational data.
The standard equipartition estimate based on radio data (Wilson
et al. 1985) yields 330 µG for the mean value of magnetic field in
the radio nebulae. The same magnetic field is necessary to explain
the synchrotron cooling break in the spectrum at about 1013 Hz
(Marsden et al. 1984). The analysis of the ultrahigh-energy γ -ray
radiation, presumably originating from the inner part of the nebula,
delivers 150–200µG (Hillas et al. 1998; Aharonian & Atoyan 1995).

All these results show that our model captures many properties
of the Crab nebula quite well. However, given the high degree of
uncertainty in the pulsar wind model, one would still expect to see
at least some quantitative differences with the observational data.
Indeed, there are such differences.

Some of them are clearly caused by the condition of exact ax-
isymmetry. For example, the optical/radio images of the simulated
nebulae produced under the assumption of negligible synchrotron
losses are rather different from the observed images. Indeed, they
reveal strong elongation along the rotational axis which reflects the
global Z-pinch structure of the pulsar nebula. In three-dimensional
simulations, the kink instability would destroy this structure, allow-
ing the magnetic loops to come apart and, hence, to reduce the axial
compression of the nebula (Begelman 1998). Apparently for the
same reason, the Crab’s jet is not so straight and well collimated as

its numerical counterparts and it does not extend that far away from
the pulsar. Instead, it bends, spreads and eventually merges into the
surrounding plasma. 3D simulations are needed to study the effect
of kink instability of the jet propagation and the mechanism of its
production.

The simulated X-ray jets are also rather faint compared to the ob-
servations. This may be explained by the fact that the magnetic field
in our simulations is purely azimuthal. As a result, it vanishes on the
symmetry axis and so does the synchrotron emissivity. In a 3D case,
the strong velocity shear would generate the poloidal component of
magnetic field in the jet, thus increasing its synchrotron emissivity.
In fact, in order to make the jets as prominent as they are in Figs
7 and 8, we artificially introduced the poloidal component of the
magnetic field within the jet volume at the level of 30 per cent of
the gas pressure. Otherwise, the jets, though still seen in the maps,
would be noticeably weaker.

Another important difference is the much higher brightness con-
trast between the jet and the counter-jet sides of the inner rings in
the simulated maps. The observations show that brightness contrast
between the opposite north-west and south-east parts of the Crab
torus is only about 3 (Greiveldinger & Aschenbach 1999; Weis-
skopf et al. 2000), whereas in the simulated maps it is as high as
10–15. Since in our model this asymmetry is entirely due to the rel-
ativistic beaming, it strongly depends on the velocity field close to
the termination shock. In fact, the brightest features of the simulated
maps originate in the ϒ stream where velocity is as high as (0.8–
0.9)c (see Section 3). Such a high velocity is explained by the fact
that the arch shock is very oblique as the result of the high asymme-
try of the energy flux distribution in the pulsar wind (see equation
1). This allows us to speculate that the Crab’s wind is less asym-
metric than the wind of the split-monopole model (Michel 1973;
Bogovalov 1999). Another possibility is even higher magnetization
in the polar region of the pulsar wind leading to even more effective
magnetic braking downstream of the arch shock. Indeed, in the ξ

= 0.5 model the brightness contrast is less than in other models. In
any case, the brightness asymmetry of the Crab’s ‘torus’ imposes
strong observational constraints on the pulsar wind models.

In the context of our MHD model, the most puzzling feature of
the Crab X-ray image is its so-called ‘inner ring’ (Weisskopf et al.
2000), which is often identified with the wind termination shock
(e.g. Hester et al. 2002). This ring is even more symmetric than the
torus, implying almost zero flow velocity. This is rather difficult to
explain in any ultrarelativistic shock model, as even in the purely
gas dynamic limit the post-shock velocity of such a shock cannot
be less than c/3 (Landau & Lifshitz 1959). Given this velocity and
the orientation of the Crab pulsar relative to the line of sight, the
brightness contrast would have to be about 2. This problem could
be resolved if the wind velocity in the equatorial plane was not ul-
trarelativistic but subrelativistic, though it is hard to see how this
could be arranged. Another remarkable property of the ring is its
knotty structure (Weisskopf et al. 2000). If the pulsar wind is ax-
isymmetric, then the only way to explain these knots is via some
kind of instability in the post-shock flow. The e-folding time of such
an instability must be very short. Moreover, such knots are much
fainter in the optical maps and, thus, this instability must somehow
affect the spectral properties of the nebular emission at high fre-
quencies, e.g. via changing the position of the cut-off frequency in
the synchrotron spectrum.

The observations of the Crab nebula show that its radio image is
somewhat larger than its optical image in all directions (e.g. Amato
et al. 2000). Given the fact that the traveltime of the equatorial flow
from the termination shock to the envelope is much shorter than the
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optical cooling time, these observations are hard to explain in our
model. It could be that the equatorial flow slows down due to the
interaction with the line-emitting filaments, which is not taken into
account in our simulations.

Finally, we did not take into account the effect of synchrotron
cooling on the overall expansion of the nebula. This effect may be
quite significant because the observed gas pressure of the nebula
is dominated by the optical/ultraviolet electrons whose synchrotron
cooling time is comparable with the lifetime of the nebula. However,
this is unlikely to have a strong impact on the structure of the inner
part of the nebula, which is the main focus of this paper.

7 C O N C L U S I O N S

Although the problem of pulsar winds remains largely unsolved,
there are a number of basic features of such winds that seem to be
generally agreed upon:

(i) The wind is radial and its overall structure in the far zone is
axisymmetric with respect to the rotational axis of the pulsar.

(ii) The energy flux is at a maximum in the equatorial plane.
(iii) The mean magnetic field of the wind is azimuthal and van-

ishes in the equatorial plane.

As a result, the average magnetization of the wind and the lo-
cal magnetization in the equatorial zone, where most of the energy
is transferred, may be rather low, well in line with conventional
wisdom. However, in the polar region it may have a magnetization
high enough for the collimating magnetic hoop stress to become dy-
namically important downstream of the termination shock. We have
constructed a model of the pulsar wind that has all such properties
and studied the interaction of such a wind with a freely expanding
supernova ejecta via axisymmetric relativistic MHD simulations.

The main properties of the numerical solutions are as follows:

(i) The termination shock is highly non-spherical. It is signifi-
cantly closer to the pulsar in the polar zone than in the equatorial
plane. In fact, this is not a single shock but a complex of several
quasi-steady shocks.

(ii) The post-shock flow is far from being quasi-radial, in contrast
to the usual assumption of many analytical models. Most of the
shocked plasma is initially confined to the equatorial outflow and
only later returns back to the main volume of the nebula.

(iii) If the wind magnetization is not very low, the magnetic hoop
stress halts the surface layers of the equatorial outflow already in
the inner region of the nebula, then pushes its plasma back towards
the axis and finally squeezes it along the axis in the form of magnet-
ically collimated jets, just like was proposed in Lyubarsky (2002).
The transition from the ‘lonely torus’ morphology to the ‘jet–torus’
morphology occurs at the mean magnetization parameter σ m ≈ 4 ×
10−3, which is only slightly higher than the previously found esti-
mates for the Crab wind, which are based on rather simplistic the-
oretical models (Kennel & Coroniti 1984; Emmering & Chevalier
1987; Begelman & Li 1992).

(iv) The simulated synchrotron images of plerionic nebulae are
strikingly similar to the Chandra and HST images. The model seems
to be able to explain not only the overall structure of the inner Crab
nebula but also a number of fine details, such as the typical velocity
of its wisps and jets, the fact that wisps seem to emerge from the
vicinity of the inner ring and their slowdown within the Crab torus.
‘The icing on the cake’ is the very confident identification of the
‘knot 1’ discovered by Hester et al. (1995) with the inner part of the
arch shock.

All these results allow us to conclude that the MHD model of
pulsar wind nebulae is basically correct. Further studies will clarify
the role of the simplifying assumptions made in this work and may
even reveal certain deficiencies of the MHD model. However, it
seems highly unlikely that the basic elements of the theory will
undergo major revision in the future.

When this paper was almost completed we became aware of a
similar numerical study being carried out by L. Del Zanna, Amato
& Bucciantini (2004), who seemed to use a rather similar setup and
have obtained very similar results. This is an important confirmation,
which is always welcome in studies involving highly sophisticated
computer simulations.
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