EVOLUÇÃO ESTELAR II - AST-202-3

Questões gerais

Prof. Carlos Alexandre Wuensche

- 1. Que parâmetros podem ser medidos a partir de uma observação estelar e que servem para determinar sua estrutura e evolução?
- 2. Faça um diagrama HR ($M_V \times T_S$ ou L $\times T_{ef}$) indicando de maneira aproximada a localização dos seguintes objetos:
 - Gigantes
 - Supergigantes
 - Estrelas variáveis
 - Anãs brancas
 - Sol
 - Estrela de 40 massas solares
- 3. Que região do espectro eletromagnético seria mais adequada para a observação dos objetos abaixo, caso seus espectros pudessem ser representados por corpos negros às temperaturas apropriadas?
- Estrelas Wolf-Rayet (T ~ 60000 K)
- Camadas de poeira ao redor de estrelas (T ~ 300 K)
- Nuvens de Hidrogênio (T ~ 100 K)
- Radiação Cósmica de Fundo (T ~ 3 K)
- 4. No processo de formação estelar, qual é a fração aproximada da energia gravitacional usada para aumentar a energia térmica dos átomos no interior estelar? O que acontece com o resto? Sugestão: use o **Teorema do Virial**
- 5. Raciociando apenas em ordens de grandeza, obtenha a taxa de produção de energia ε.

- 6. Explique porque os aglomerados estelares são especialmente importantes para o estudo da evolução estelar.
- 7. Suponha que, nesse momento, o ciclo de reações nucleares no interior do Sol pudesse ser "desligado", sendo essa a única interferência "externa" permitida. Como veríamos seu diâmetro e sua luminosidade cerca de 10 anos após esse evento, ou seja, em 2007? Eles aumentariam, diminuiriam ou continuariam os mesmos? Justifique sua resposta.
- 8. Faça um diagrama HR (M_V x T_s ou T_{ef}) indicando de maneira aproximada a localização dos seguintes objetos:

Variáveis de longo período	Novas
Cefeidas clássicas	Anãs brancas
Cefeidas anãs	Variáveis W Virginis
Variáveis RR Lyrae	Sol
Núcleos de nebulosas planetárias	Estrelas T-Tauri

- 9. O que é o paradoxo de Olbers? Comente a sua solução
- 10.O valor médio da luminosidade do Sol é L₀=3,83x10³³ erg/s. A partir deste valor, determine a <u>constante solar</u>, isto é, a energia recebida acima da atmosfera da terra por unidade de área e por unidade de tempo (cal/cm².min). Compare seu resultado com medidas recentes da constante solar.
- 11.O sol subentende um ângulo de aproximadamente 32'. Qual é o valor do raio do Sol em cm? A partir da temperatura efetiva do Sol (T_e=5770 K), obtenha novamente o seu raio. Compare os dois resultados com o valor geralmente adotado. Qual é o valor do ângulo sólido subentendido pelo Sol?
- 12.Use os dados da órbita da Terra e a terceira lei de Kepler para determinar a massa do Sol. Essa é uma boa aproximação? Justifique. Compare com o valor geralmente adotado.
- 13.As linhas do H são mais intensas nas estrelas do tipo espectral A, tornando-se mais fracas tanto nas estrelas mais quentes (tipo O, B) quanto nas mais frias (tipos F, G, K, M). Por quê?
- 14.Um exercício de classificação espectral...
 - A partir dos dados da tabela anexa, procure identificar nos espectros, também anexos, as principais linhas de absorção das estrelas tipo O5, A5, F5, G4 e K4.

- Para esses mesmos espectros, procure traçar a linha do contínuo subjacente para λ > 3700 Å. Calcule então os índices de cor B-V correspondentes e determine as temperaturas efetivas. Verifique se os valores encontrados são consistentes com a classificação espectral proposta e, caso necessário, explique as diferenças.
- Compare os espectros tratados acima com os espectros de corpo negro nas temperaturas efetivas calculadas. Explique as diferenças observadas
- 15.A tabela abaixo relaciona a magnitude aparente V, o índice de cor B-V, o tipo espectral T_S e a paralaxe p'' para três estrelas da seqüência principal:

Estrela	V	B-V	T_{S}	p"
Sirius A	-1,46	0,00	A1 V	0,377
α Cen B	1,33	0,88	K5 V	0,745
Barnard	9,54	1,74	M5 V	0,522

Use a calibração tipo espectral - magnitude absoluta e determine a paralaxe espectroscópica das estrelas

Repita os cálculos usando uma calibração índice de cor - magnitude absoluta

Repita os cálculos usando as magnitudes absolutas determinadas individualmente (a partir de M_V). Compare os três resultados e comente-os.

Sirius A:
$$M_V = 1,42$$
; aCen B: $M_V = 5,69$; Barnard: $M_V = 13,25$

- 16.À distância de 1 U.A. do Sol, o vento solar apresenta uma densidade de prótons da ordem de 10 cm⁻³ deslocando-se a uma velocidade de 400 km.s⁻¹. Supondo-se que a temperatura do plasma seja da ordem de T_{plasma} ≈ 10⁵ K, estime:
 - A taxa de perda de massa sofrida pelo Sol,
 - A luminosidade perdida através desse processo, comparando-a com a luminosidade radiativa do Sol.
 - Repita os cálculos acima para uma gigante vermelha em que log $(L/L_0) = 4$ e $dM/dt = 10^{-6} M_0/ano$.
- 17. As estrelas menos massivas da Seqüência Principal podem ter massas da ordem de 0,5 a 0,3 massas solares. O que acontece com os objetos que tem massas ainda menores após o processo de contração?
- 18.Em uma estrela de massa M, a densidade decresce, a partir do centro para a superfície, como função da distância radial, de acordo com

$$\rho = \rho_c [1 - (r/R)]^2$$

em que ρ_c é a densidade central (constante) e R é o raio da estrela.

- •Calcule M(r)
- •Deduza a relação entre M e R
- •Mostre que a densidade média da estrela (massa total dividida pelo volume total) é $\sim 0.4~\rho_{\text{c}}$
- •Mostre, usando argumentos puramente dimensionais, que a luminosidade de uma estrela de baixa massa na SP pode ser escrita como L $_{\propto}$ M⁵.