

- CVR 88-7 AST2	 Considerando um espectro de corpo negro e hv « kT, a intensidade de uma fonte é dada por: B_v = 2kT/B_v = 2kT/λ² Pode ser mostrado que o tamanho do feixe é proporcional a λ² (Léna), assim o fluxo é proporcional a F_v = 2kT Assim, podemos associar ao fluxo observado uma temperatura <u>de antena</u> - o que é comumente feito em radioastronomia Essa temperatura pode estar relacionada à fonte se ♦ ela é opticamente espessa e está em equilíbrio termodinâmico ♦ preenche o campo angular do telescópio 	Potência recebida. Sinal da antena.	- CVR 8B-5 AST2	 fluxo das fontes típicas È Fv < 1 Jy (o que é pequeno!) ◊ algumas fontes apenas tem fluxo maior que 1 Jy 	 ◊ atmosfera transparente totalmente ou em janelas • unidade de intensidade ◊ Jansky: 1 Jy = 10⁻²⁶ W m⁻² Hz⁻¹ 	 Mais velha das novas astronomias
3T203 – CVR 8B-8	 baixo sinal das fontes astronômicas implica em necessidade de instrumentação com baixo ruído ruído térmico potência do ruído - <i>noise</i> (dedução devida a Nyquist) p_n = k T_n → se T_n = 300 K, p_n = 4 10⁵ Jy (compara com sinal típico) assim, sistemas resfriados podem ser adequados em radioastronomia se ruído térmico é constante, pode ser estimado e subtraído do sinal 	Ruído	3T203 – CVR 8B-6	 detecção em duas fases conversão da onda em sinal elétrico feita pela antena medida do sinal elétrico 	 detectores típicos ↑ 1 polarização ↓ intervalos estreitos de frequências 	 Detetores em rádiofrequências detecção coerente informação sobre a fase é preservada

1.2 Absorption in the Earth's atmosphere

S

Smith

8B-20

8B-26

\' > \

Wikipedia

GLAST Burst Monitor Detetor de Nal

http://www-glast.stanford.edu/instrument.html AST203 – CVR 8B-31	Incoming gamma rays pass freely through the thin plastic anticoincidence detector, while charged cosmic rays cause a flash of light, allowing the LAT identify the relatively rare gamma rays. A gamma ray continues until it interacts with an atom in one of the thin tungsten foils, producing two charged particles: an electron and a positron. They proceed on, creating ions in thin silicon strip detectors. The silicon strips alternate in the X and Y directions, allowing the progress of the particles to be tracked. Finally the particles are stopped by a cesium iodide calorimeter which measures the total energy deposited. The information from the anticoincidence detector, tracker and calorimeter is combined to estimate the energy and direction of the gamma ray.	Fermi satellite: LAT instrument - Large Area Telescope	<section-header>Spark chamber• faixa de energia: > 20 MeV• produção de pares: e + et• • • • • • • • • • • • • • • • • • •</section-header>	
AST203 – CVR 8B-32	Flare da nebulosa do Carangueijo detectado pelo LAT do Fermi	Normal Flare State April 2011	 câmera com gás néon série de eletrodos pares produzem ionização do gás pulsos de raios cósmicos = pulsos de raios. utilização de detectores tipo cintilador para diferenciar Detecção de raios-γ premio Nobel de Fisica em 1948: Patrick Blackett 	

Detetores de estado sólido faixa de energia: 10 keV – 10 MeV fotoionização em semicondutores detecção dos e- no anodo \$ #e- é proporcional à energia com resolução espectral

materiais

boa

- ♦ germânio: 100 keV 10 MeV
- ♦ silício: 0.4 4 keV

AST203 - CVR

8B-33

AST203 - CVR

AST203 - CVR

8B-35

ACIS/Chandra

- The Advanced CCD Imaging Spectrometer (ACIS)
- Ten CCD chips in 2 arrays provide imaging and spectroscopy
- imaging resolution is 0.5 arcsec over the energy range 0.2 10 \mbox{keV}
- sensitivity: 4x10⁻¹⁵ ergs cm⁻² sec⁻¹ in 10⁵ s

8B-34